
Recitation Week 10- Rod Cutting

Michael Levet

October 27, 2020

1 Introduction to Dynamic Programming

Dynamic programming is a powerful technique to solve computational problems, which have a recursive sub-
structure and recurring subproblems. The idea is to solve these recursive subcases and store these solutions in
a lookup table. When a solved recursive subcase is encountered, the existing solution is accessed using only
a constant number of steps. A solution to the initial instance is constructed from the solutions to the sub-
cases, typically in a bottom-up manner. Frequently, the computational problems of interest are optimization
problems. We begin by introducing some examples amenable to the dynamic programming technique.

1.1 Rod-Cutting Problem

In this section, we examine the Rod-Cutting Problem. Let us consider a motivating example. Suppose we
have a rod of length 5, which can be cut into smaller pieces of integer lengths 1, 2, 3, or 4. These smaller rods
can then be further cut into smaller pieces. We stress that the rod pieces can only be cut into pieces of integer
length; so pieces of size 1/2 or π are not considered in this problem. Now suppose that we can sell rods of
length 1 for $1, which we denote p1 = 1. Similarly, suppose that the prices for rods of length 2, . . . , 5 are given
by p2 = 4, p3 = 7, p4 = 8, and p5 = 9 respectively. We make two key assumptions: we will sell all the smaller
rods, regardless of the cuts; and that each cut is free. Under these assumptions, how should the rod be cut to
maximize the profit? We note the following cuts and the corresponding profits.

� If the rod is cut into five pieces of length 1, we stand to make 5 · p1 = $5.

� If the rod is cut into one piece of length 2 and one piece of length 3, we stand to make p2+p3 = 4+7 = $11.

� If the rod is cut into two pieces of length 2 and one piece of length 1, we stand to make 2 · p2 + p1 =
8 + 1 = $9.

Out of the above options, cutting the rod into one piece of length 2 and one rod of length 3 is the most
profitable. Of course, there are other possible cuts not listed above, such as cutting the rod into one piece
of length 1 and one piece of length 4. The goal is to determine the most profitable cut. The Rod-Cutting
Problem is formalized as follows.

Definition 1 (Rod-Cutting Problem).

� Instance: Let n ∈ N be the length of the rod, and let p1, p2, . . . , pn be non-negative real numbers. Here,
pi is the price of a length i rod.

� Solution: The maximum revenue, which we denote rn, obtained by cutting the rod into smaller pieces
of integer lengths and selling the smaller rods.

Intuitively, the maximum revenue is determined by examining the revenues for the subdivisions and taking the
largest. Mathematically, this amounts to the following expression:

rn = max(pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1). (1)

We begin by working through an example of utilizing dynamic programming to determine the maximum profit.

Example 1. Suppose we have a rod of length 5, with prices p1 = 1, p2 = 4, p3 = 7, p4 = 8, p5 = 9. We proceed
as follows.

1

(a) Initialize a lookup table T [1, . . . , 5]. Now for a rod of length 1, there is only one price: p1. So we set
T [1] := p1.

(b) Now consider a rod of length 2. There are two options: either don’t cut the rod, or cut the rod into two
smaller pieces of length 1. Here, p2 = 4 represents the case in which no cuts to a rod of length 2. Now
suppose instead we cut the rod up into two smaller pieces each of length 1. We know that the maximum
profit for a rod of length 1 is r1 = T [1] = 1. So the profit of cutting the rod into two smaller pieces each
of length 1 is 2r1 = 2. Now r2 = max(p2, 2r1) = 4, so we set T [2] = 4.

(c) Now consider a rod of length 3. Here, we have more options: we can leave the rod untouched, we can
divide the rod into smaller pieces of length 1 or length 2; or we can divide the rod into three pieces of
length 1. If we do not divide the rod into smaller pieces, the profit is p3 = 7. Now suppose we divide
the rod up into smaller pieces of length 2 and length 1. We may now keep this configuration, or further
divide the rod of length 2 into two rods each of length 1, as discussed in the previous bullet point. Rather
than re-solving this problem, we can simply look up the maximum profit for a rod of length 2 in the
lookup table. Recall that r2 = T [2] = 4 and r1 = 1. So the profit from cutting the rod into smaller pieces
of length 2 and length 1 is r2 + r1 = 5. Now r3 = max(p3, r2 + r1) = 7, so we set T [3] = 7.

(d) Now consider a rod of length 4. We have the following options for the first cut: leave the rod uncut, in
which we stand to make profit p4 = 8; cut the rod into smaller pieces of length 1 and length 3; or cut the
rod into two smaller rods, each of length 2. Consider the case in which we cut the rod up into smaller
pieces of length 1 and length 3. The natural, though inefficient, approach here is to consider all the ways
in which we could cut up the rod of legnth 3. It turns out that we don’t need to do this, as the maximum
revenue attainable from a rod of length 3 was found in the previous bullet point. This is the power of
dynamic programming: once a solution to a smaller problem is found, we simply look it up rather than
re-solving the smaller problem. Similarly, we can look up the maximum profit for a rod of length 2. So
given our cases, we have the following possible profits:

� The uncut rod of length 4 will result in profit p4 = 8.

� The rod cut into pieces of length 3 and length 1 will result in profit r3 +r1 = T [3]+T [1] = 7+1 = 8.

� The rod cut into two pieces, each of length 2, will result in profit 2r2 = 2 · T [2] = 2 · 4 = 8.

So T [4] = max(8, 8, 8) = 8.

(e) Finally, consider our original rod of length 5. We have the following possible initial cuts:

� We can leave the rod uncut, in which case we will make profit p5 = 9.

� We can cut the rod into one piece of length 4 and one piece of length 1. The maximum revenue
attainable by cutting up a rod of length 4 was determined already. So we can simply look up this
solution in T [4]. Thus, the profit in this case is r4 + r1 = T [4] + T [1] = 8 + 1 = 9.

� We can cut up the rod into one piece of length 3 and one piece of length 2. By similar argument as
above, we may simply look up the maximum revenues attainable from a rod of length 3 and a rod
of length 2. So our profit is r3 + r2 = T [3] + T [2] = 7 + 4 = 11.

So r5 = max(9, 9, 11) = 11. Thus, we set T [5] = 11.

We conclude that we stand to make $11 from a rod of length 5.

While the expresion (1) may not seem insightful, it in fact provides an algorithm to compute rn. Example 1
provides a tangible example of this algorithm. The goal now is to generalize the algorithm from Example 1 to
work for any rod of positive integer length any list of prices. We proceed as follows.

(a) Initialize the lookup table T [1, . . . , n], and set T [1] := p1.

(b) We set T [2] := max(p2, 2r1). Here, p2 represents the case in which no cuts to a rod of length 2, and
2r1 represents the case in which a rod of length 2 is cut into two rods each of length 1. We note that
r1 = T [1] = p1.

(c) We set T [3] := max(p3, r1 + r2). Now r1 = T [1], and r2 = T [2]. We have already solved the rod cutting
problem for a length 2 rod, so we simply look up r2 in the table T rather than re-solving the problem.

2

(d) T [4] := max(p4, r1 + r3, 2r2). As we have already computed r1, r2, r3, we may look up their respective
values in T rather than re-computing these values.

Continuing in this manner, we compute rn, which is the value in T [n] after the algorithm terminates.

Remark 1. This algorithm only provides the maximum revenue. It does not tell us how to achieve that result.
As an exercise, modify the algorithm to produce an optimal set of rod cuts.

2 Exercises

(Recommended) Problem 1. Modify the lookup table from Example 1 to allow us to determine the optimal
sub-division. That is, at index i, your lookup table should provide the maximum revenue for a rod of length
i, as well as an optimal cut for the rod of length i. Work through Example 1 to determine an optimal cut for
the original rod of length 5.

(Recommended) Problem 2. Suppose we have a rod of length 6, with prices given as follows: p1 = 1, p2 =
5, p3 = 8, p4, p5 = 9, p6 = 15. Determine the maximum revenue r6 obtained by cutting up this rod. Clearly
specify the optimal cut you obtained from the dynamic programming procedure.

(Recommended) Problem 3. Suppose we modify the Rod Cutting problem, so that each cut costs 1 unit
of money. Do the following

(a) Modify the recurrence from (1) to compute the maximum revenue rn for cutting a rod of length n.

(b) As in Problem 2, suppose we have a rod of length 6, with prices given as follows: p1 = 1, p2 = 5, p3 =
8, p4 = 8, p5 = 9, p6 = 15. Using the recurrence in part (a), determine the maximum revenue r6 obtained
by cutting up this rod. Clearly specify the optimal cut you obtained from the dynamic programming
procedure.

(Recommended) Problem 4. The purpose of this problem is to highlight the power of the dynamic pro-
gramming approach for the Rod Cutting problem.

(a) How many possible ways are there to cut a rod of length n? [Hint: Start by determining the number of
places to make a cut.]

(b) The power of the dynamic programming approach is that the order in which we compute sub-cases
contributes to the efficiency. Suppose we wish to find an optimal cut for a rod of length n. To do this,
we first consider a rod of length 1, then a rod of length 2, and so on.

(i) How many calculations are needed to compute r1?

(ii) Once r1 is computed, how many calculations are needed to compute r2?

(iii) Once r1 and r2 have been computed, how many calculations are needed to compute r3?

(iv) Once r1, . . . , rn−1 have been computed, how many calculations are needed to compute rn?

(v) As the dynamic programming approach computes r1, . . . , rn, what is the runtime complexity T (n)
of this algorithm? Give a suitable function f(n) such that T (n) = Θ(f(n)).

(vi) Compare your answer in (v) to your answer in (a). Notice that the dynamic programming algorithm
is quite efficient in parsing through a search space of exponential size.

3

	Introduction to Dynamic Programming
	Rod-Cutting Problem

	Exercises

