
Theory of Computation- Lecture Notes

Michael Levet

January 31, 2024

Contents

1 Mathematical Preliminaries 3
1.1 Set Theory . 3
1.2 Relations and Functions . 4

1.2.1 Functions . 4
1.2.2 Equivalence Relations . 6

1.3 Proof by Induction . 8
1.3.1 A Brief Review of Asymptotics . 11

1.4 Combinatorics and Graph Theory . 12
1.4.1 Basic Enumerative Techniques . 12
1.4.2 Combinatorial Proofs . 15
1.4.3 Graph Theory . 16

1.5 Number Theory . 20
1.6 Russell’s Paradox and Cantor’s Diagonal Argument . 24

2 Automata Theory 25
2.1 Regular Languages . 25
2.2 Finite State Automata . 26
2.3 Converting from Regular Expressions to ϵ-NFA . 31
2.4 Algebraic Structure of Regular Languages . 33
2.5 DFAs, NFAs, and ϵ-NFAs . 34
2.6 DFAs to Regular Expressions- Brzozowski’s Algebraic Method 37
2.7 Pumping Lemma for Regular Languages . 41
2.8 Closure Properties . 42
2.9 Myhill-Nerode and DFA Minimization . 44

3 More Group Theory (Optional) 48
3.1 Introductory Group Theory . 48

3.1.1 Introduction to Groups . 48
3.1.2 Dihedral Group . 50
3.1.3 Symmetry Group . 53
3.1.4 Group Homomorphisms and Isomorphisms . 55
3.1.5 Group Actions . 56
3.1.6 Algebraic Graph Theory- Cayley Graphs . 58
3.1.7 Algebraic Graph Theory- Transposition Graphs . 60

3.2 Subgroups . 61
3.2.1 Cyclic Groups . 64
3.2.2 Subgroups Generated By Subsets of a Group . 66
3.2.3 Subgroup Poset and Lattice (Hasse) Diagram . 66

3.3 Quotient Groups . 69
3.3.1 Introduction to Quotients . 69
3.3.2 Normal Subgroups and Quotient Groups . 70
3.3.3 More on Cosets and Lagrange’s Theorem . 73
3.3.4 The Group Isomorphism Theorems . 76
3.3.5 Alternating Group . 79
3.3.6 Algebraic Graph Theory- Graph Homomorphisms . 81

1

3.3.7 Algebraic Combinatorics- The Determinant . 84
3.4 Group Actions . 84

3.4.1 Conjugacy . 84
3.4.2 Automorphisms of Groups . 88
3.4.3 Sylow’s Theorems . 88
3.4.4 Applications of Sylow’s Theorems . 91
3.4.5 Algebraic Combinatorics- Pólya Enumeration Theory 93

4 Turing Machines and Computability Theory 93
4.1 Standard Deterministic Turing Machine . 93
4.2 Variations on the Standard Turing Machine . 96
4.3 Turing Machine Encodings . 98
4.4 Chomsky Heirarchy and Some Decidable Problems . 98
4.5 Undecidability . 101
4.6 Reducibility . 102

5 Complexity Theory 103
5.1 Time Complexity- P and NP . 104
5.2 NP-Completeness . 106
5.3 More on P and P-Completeness . 111
5.4 Closure Properties of NP and P . 114
5.5 Structural Proofs for NP and P . 114
5.6 Ladner’s Theorem . 114

5.6.1 Russell Impagliazzo’s Proof of Ladner’s Theorem . 117
5.7 PSPACE . 119
5.8 PSPACE-Complete . 119

2

1 Mathematical Preliminaries

1.1 Set Theory

Definition 1 (Set). A set is collection of distinct elements, where the order in which the elements are listed
does not matter. The size of a set S, denoted |S|, is known as its cardinality or order. The members of a set
are referred to as its elements. We denote membership of x in S as x ∈ S. Similarly, if x is not in S, we denote
x ̸∈ S.

Example 1. Common examples of sets include the set of real numbers R, the set of rational numbers Q, and
the set of integers Z. The sets R+,Q+ and Z+ denote the strictly positive elements of the reals, rationals,
and integers respectively. We denote the set of natural numbers N = {0, 1, . . .}. Let n ∈ Z+ and denote
[n] = {1, . . . , n}.

We now review several basic set operations, as well as the power set. It is expected that students will be
familiar with these constructs. Therefore, we proceed briskly, recalling definitions and basic examples intended
solely as a refresher.

Definition 2. Set Union Let A,B be sets. Then the union of A and B, denoted A ∪B is the set:

A ∪B := {x : x ∈ A or x ∈ B}

Example 2. Let A = {1, 2, 3} and B = {4, 5, 6}. Then A ∪B = {1, 2, 3, 4, 5, 6}.

Example 3. Let A = {1, 2, 3} and B = {3, 4, 5}. So A ∪ B = {1, 2, 3, 4, 5}. Recall that sets do not contain
duplicate elements. So even though 3 appears in both A and B, 3 occurs exactly once in A ∪B.

Definition 3. Set Intersection Let A,B be sets. Then the intersection of A and B, denoted A ∩B is the set:

A ∩B := {x : x ∈ A and x ∈ B}

Example 4. Let A = {1, 2, 3} and B = {1, 3, 5}. Then A ∩B = {1, 3}. Now let C = {4}. So A ∩ C = ∅.

Definition 4 (Symmetric Difference). Let A,B be sets. Then the symmetric difference of A and B, denoted
A△B is the set:

A△B := {x : x ∈ A or x ∈ B, but x ̸∈ A ∩B}

Example 5. Let A = {1, 2, 3} and B = {1, 3, 5}. Then A△B = {2, 5}.

For our next two definitions, we let U be our universe. That is, let U be a set. Any sets we consider are subsets
of U .

Definition 5 (Set Complementation). Let A be a set contained in our universe U . The complement of A,
denoted AC or A, is the set:

A := {x ∈ U : x ̸∈ A}

Example 6. Let U = [5], and let A = {1, 2, 4}. Then A = {3, 5}.

Definition 6 (Set Difference). Let A,B be sets contained in our universe U . The difference of A and B,
denoted A \B or A−B, is the set:

A \B = {x : x ∈ A and x ̸∈ B}

Example 7. Let U = [5], A = {1, 2, 3} and B = {1, 2}. Then A \B = {3}.

Remark: The Set Difference operation is frequently known as the relative complement, as we are taking the
complement of B relative to A rather than with respect to the universe U .

Definition 7 (Cartesian Product). Let A,B be sets. The Cartesian product of A and B, denoted A × B, is
the set:

A×B := {(a, b) : a ∈ A, b ∈ B}

Example 8. Let A = {1, 2, 3} and B = {a, b}. Then A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

3

Definition 8 (Power Set). Let S be a set. The power set of S, denoted 2S or P(S), is the set of all subsets
of S. Formally:

2S := {A : A ⊆ S}

Example 9. Let S = {1, 2, 3}. So 2S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Remark: For finite sets S, |2S | = 2|S|; hence, the choice of notation.

Definition 9 (Subset). Let A,B be sets. A is said to be a subset of B if for every x ∈ A, we have x ∈ B as
well. This is denoted A ⊆ B. Note that B is a superset of A.

Example 10. Let A = [3], B = [6], C = {2, 3, 5}. So we have A ⊆ B and C ⊆ B. However, A ̸⊆ C as 1 ̸∈ C;
and C ̸⊆ A, as 5 ̸∈ A.

Remark: Let S be a set. The subset relation forms a partial order on 2S . To show two sets A and B are
equal, we must show A ⊆ B and B ⊆ A. We demonstrate how to prove two sets are equal below.

Proposition 1.1. Let A = {6n : n ∈ Z}, B = {2n : n ∈ Z}, C = {3n : n ∈ Z}. So A = B ∩ C.

Proof. We first show that A ⊆ B ∩ C. Let n ∈ Z. So 6n ∈ A. We show 6n ∈ B ∩ C. As 2 is a factor of 6,
6n = 2 · (3n) ∈ B. Similarly, as 3 is a factor of 6, 6n = 3 · (2n) ∈ C. So 6n ∈ B ∩ C. We now show that
B ∩ C ⊆ A. Let x ∈ B ∩ C. Let n1, n2 ∈ Z such that x = 2n1 = 3n2. As 2 is a factor of x and 3 is a factor of
x, it follows that 2 · 3 = 6 is also a factor of x. Thus, x = 6n3 for some n3 ∈ Z. So x ∈ A. Thus, B ∩ C ⊆ A.
Thus, A = B ∩ C, as desired.

Proposition 1.2. Let A,B,C be sets. Then A× (B ∪ C) = (A×B) ∪ (A× C).

Proof. Let (x, y) ∈ A × (B ∪ C). If y ∈ B, then (x, y) ∈ (A × B). Otherwise, y ∈ C and so (x, y) ∈ (A × C).
Thus, A× (B ∪ C) ⊆ (A× B) ∪ (A× C). Now let (d, f) ∈ (A× B) ∪ (A× C). Clearly, d ∈ A. So f must be
in either B or C. Thus, (d, f) ∈ A× (B ∪ C), which implies (A×B) ∪ (A× C) ⊆ A× (B ∪ C). We conclude
that A× (B ∪ C) = (A×B) ∪ (A× C).

1.2 Relations and Functions

Definition 10 (Relation). Let X be a set. A k-ary relation on X is a subset R ⊆ Xk.

Example 11. The notion of equality = over R is the canonical example of a relation. It is perhaps the most
well-known instance of an equivalence relation, which will be discussed later.

Intuitively, a k-ary relation R contains k-tuples of elements from X that share common properties. Computer
scientists and mathematicians are interested in a number of different relations, including the adjacency relation
(graph theory), equivalence relations, orders (such as partial orders), and functions. In this section, functions,
asymptotics, and equivalence relations will be discussed.

1.2.1 Functions

The notion of a function will be introduced first. Functions are familiar mathematical objects, which appear
early on in mathematics education with the notion of an input-output machine. Roughly speaking, a function
takes an input and produces an output. Some common examples include the linear equation f(x) = ax + b
and the exponential f(x) = 2x.

We denote a function as follows. Let X and Y be sets. A function is a map f : X → Y such that for every
x ∈ X, there is a unique y ∈ Y where f(x) = y. We say that X is the domain and Y is the codomain. The
range or image is the set f(X) = {f(x) : x ∈ X}. More formally, a function is defined as follows:

Definition 11. Function Let X and Y be sets. A function f is a subset (or 1-place relation) of X × Y such
that for every x ∈ X, there exists a unique y ∈ Y where (x, y) ∈ f .

Let’s consider some formal functions and one example of a relation that is not a function.

Example 12. Let f : R → R be given by f(x) = x. This is known as the identity map.

Example 13. Let g : R → R be given by g(x) = 3x2.

4

Example 14. Let h : R → R given by:

h(x) =

{
x : x ̸= 3

−3, 2 : x = 3

Note that h is not a function as (3,−3) ∈ h and (3, 2) ∈ h. The definition of a function states that there must
be a unique y such that (3, y) ∈ h. If we revise h such that h(3) = −3 only, then h satisfies the definition of a
function.

From a combinatorial perspective, special types of functions known as injections and surjections are of great
importance. The idea is that if we have two sets X and Y and know the cardinality of X, then an injection or
surjection fromX to Y yields results about Y ’s cardinality. We can deduce similar results about Y ’s cardinality.

An injection is also known as a one-to-one function. Recall the definition of a function states that the map
f : X → Y maps each x ∈ X to a unique y ∈ Y . It allows for functions such as g : R → R given by
g(x) = 0. Clearly, every x ∈ R maps to the same y-coordinate: y = 0. An injection disallows functions such as
these. The idea is that each y ∈ Y can be paired with at most one x ∈ X, subject to the constraint that each
element in X must be mapped to some element from Y . So there can be unmapped elements in Y , but not in X.

We define this formally as follows.

Definition 12 (Injection). A function f : X → Y is said to be an injection if f(x1) = f(x2) =⇒ x1 = x2.
Equivocally, f is an injection if x1 ̸= x2 =⇒ f(x1) ̸= f(x2).

Let’s consider examples of functions that are injections, as well as those that fail to be injections.

Example 15. Let X be a set. Recall the identity map id : X → X given by id(x) = x. This function is an
injection. Let id(x1) = id(x2). Then we have id(x1) = x1 = id(x2) = x2, which implies that x1 = x2.

Example 16. Consider the function g : R → R be given by g(x) = x2. Observe that g fails to be an injection.
Let g(x1) = g(x2) = 4. We have x1 = 2 and x2 = −2, both of which map to 4. If we instead consider
h : R+ → R by h(x) = x2, we have an injection since we only consider the positive real numbers. Observe as
well that both g and h do not map to any element less than 0.

Remark: Let’s reflect on what we know about injections. An injection is a function, in which any mapped
element in the codomain is mapped to exactly once. There may be elements in the codomain which remain
unmapped. As a result, for two sets X and Y , it is defined that |X| ≤ |Y | if there exists an injection f : X → Y .
Intuitively speaking, an injection pairs each element from the domain with an element in the codomain, allow-
ing for leftover elements in the codomain. Hence, X has no more elements than Y if there exists an injection
f : X → Y .

Surjections or onto functions center around the codomain, rather than the domain. Recall the earlier example
of g : R → R given by g(x) = x2, which satisfies g(x) ≥ 0 for every x ∈ R. So the negative real numbers will
never be maped under g. Surjections exclude functions like g. Intuitively, a function is a surjection if every
element in the codomain is mapped. Any element of the codomain can have multiple domain points mapping
to it, as long as each has at least one domain point mapping to it. We define this formally as follows.

Definition 13 (Surjection). Let X and Y be sets. A function f : X → Y is a surjection if for every y ∈ Y ,
there exists an x ∈ X such that f(x) = y.

We have already seen an example of a function that is not a surjection. Let us now consider a couple examples
of functions that are surjections.

Example 17. Recall the identity map id : X → X. For any x ∈ X, we have id(x) = x. So the identity map
is a surjection.

Example 18. Let X = {a, b, c, d} and let Y = {1, 2, 3}. Define f : X → Y by f(a) = f(b) = 1, f(c) = 2 and
f(d) = 3. This function is a surjection, as each y ∈ Y is mapped under f . Observe that there are more X
elements than Y elements. If X instead had two elements, then f would not be a surjection because at most
two of the three elements in Y could be mapped.

5

Remark: Similarly, let’s now reflect upon what we know about surjections. A surjection is a function in which
every element of the codomain is mapped at least once. Some elements in the codomain may have multiple
elements in the domain mapping to them. Therefore, if there exists a surjection f : X → Y , then |X| ≥ |Y |.
We now introduce the notion of a bijection. A function is a bijection if it is both an injection and a surjection.
Intuitively, a bijection matches the elements in the domain and codomain in a one-to-one manner. That is,
each element in the domain has precisely one mate in the codomain and vice versa. For this reason, two sets
X and Y are defined to have the same cardinality if there exists a bijection f : X → Y . Combinatorialists use
bijections to ascertain set cardinalities. The idea is that given sets X and Y , with |Y | known, can we construct
a bijection f : X → Y ? If the answer is yes, then |X| = |Y |.

Definition 14 (Bijection). Let X and Y be sets. A bijection is a function f : X → Y that is both an injection
and a surjection.

Example 19. Some examples of bijections include the identity map, as well as the linear equation f(x) =
mx+ b.

We conclude by showing that the composition of two injective functions are injective, and that the composition
of two surjective functions are surjective. This implies that the composition of two bijections is itself a bijection,
which is an important fact when working with permutations (which we shall see later).

Proposition 1.3. Let f : X → Y and g : Y → Z be injective functions. Then g ◦ f is also injective.

Proof. Let x1, x2 ∈ X be distinct. As f is injective, f(x1) ̸= f(x2). Similarly, as g is injective, g(f(x1)) ̸=
g(f(x2)). So (g◦f)(x1) ̸= (g◦f)(x2), as desired. As x1, x2 were arbitrary, we conclude that g◦f is injective.

Proposition 1.4. Let f : X → Y and g : Y → Z be surjective functions. Then g ◦ f is also surjective.

Proof. Let z ∈ Z. As g is surjective, there exists y ∈ Y such that g(y) = z. Now as f is surjective, there exists
x ∈ X such that f(x) = y. Thus, (g ◦ f)(x) = z. As z was arbitrary, it follows that g ◦ f is surjective.

1.2.2 Equivalence Relations

Equivalence relations are of particular importance in mathematics and computer science. Intuitively, an equiv-
alence relation compares which elements in a set X share some common property. The goal is to then partition
X into equivalence classes such that all the elements in one of these parts are all equivalent to each other.
This allows us to select an arbitrary distinct representative from each equivalence class and consider only that
representative.

This idea of partitioning comes up quite frequently. The integers modulo n, denoted Z/nZ, is a canonical ex-
ample. Big-Theta is another important equivalence relation. Equivalence relations allow us to prove powerful
theorems such as Fermat’s Little Theorem from Number Theory and Cauchy’s Theorem from Group Theory,
as well as to construct a procedure to minimize finite state automata via the Myhill-Nerode Theorem.

In order to guarantee such a partition, an equivalence relation must satisfy three properties: reflexivity, sym-
metry, and transitivity. We define these formally below, restricting attention to binary relations.

Definition 15 (Reflexive Relation). A relation R on the set X is said to be reflexive if (a, a) ∈ R for every
a ∈ X.

Definition 16 (Symmetric Relation). A relation R on the set X is said to be symmetric if (a, b) ∈ R if and
only if (b, a) ∈ R for every a, b ∈ X.

Definition 17 (Transitive Relation). A relation R on the set X is said to be transitive if for every a, b, c ∈ X
satisfying (a, b), (b, c) ∈ R, then (a, c) ∈ R.

Definition 18 (Equivalence Relation). An equivalence relation is a reflexive, symmetric, and transitive rela-
tion.

6

Let us break each of these definitions down and compare them to how the equality relation on R behaves.
Intuitively, a real number is equal to itself; i.e., 3 = 3, 0 = 0 and 1 ̸= 2. The properties of an equivalence
relation reflect this behavior. The reflexive axiom states that (a, a) ∈ R for every a ∈ X. Intuitively, reflexivity
captures this notion that an element is equivalent to itself.

Now consider the definition of a symmetric relation: for every a, b ∈ X, (a, b) ∈ R if and only (b, a) ∈ R.
Suppose in a high school algebra problem we deduce that that for the variables x and y, we have x = y. Does
it make sense that y ̸= x? Of course not. Equivalence relations must capture this property as well, which is
the purpose of the symmetry axiom. Elements in the same equivalence class must be pairwise equivalent.

The last axiom is transitivity. We refer back to the example of the high school algebra problem. Suppose
this time we have three variables x, y and z satisfying x = y and y = z. Over the real numbers, it makes
perfect sense that x = z. So from an intuitive perspective, it is important that equivalence relations enforce
this property. However, from a more technical perspective, transitivity implies that the equivalence classes are
pairwise disjoint. In other words, transitivity is really the driving force in partitioning the set into equivalence
classes. This will be proven later.

The congruence relation a ≡ b (mod n) is a canonical example of an equivalence relation. We prove this below.

Definition 19 (Congruence Relations). Let n ≥ 1 be an integer. The congruence relation modulo n is a
binary relation on Z given by: a ≡ b (mod n) (read as: a is congruent to b modulo n) if and only if n divides
b− a.

Proposition 1.5. Let n ≥ 1 be an integer. The relation a ≡ b (mod n) is an equivalence relation.

Proof. We show that the congruence relation modulo n is reflexive, symmetric, and transitive.

� Reflexivity. Let a ∈ Z. We show that a ≡ a (mod n). So n divides a − a = 0. Thus, a ≡ a (mod n).
So the congruence relation modulo n is reflexive.

� Symmetry. Let a, b ∈ Z such that a ≡ b (mod n). We show that b ≡ a (mod n). Let q ∈ Z such that
nq = a − b. Thus, n(−q) = b − a, so n divides b − a. Thus, b ≡ a (mod n). So the congruence relation
modulo n is symmetric.

� Transitivity. Let a, b, c ∈ Z such that a ≡ b (mod n) and b ≡ c (mod n). We show that a ≡ c (mod n).
By the definition of the congruence relation, n divides (a − b) and n divides (b − c). Let h, k ∈ Z such
that nh = a− b and nk = b− c. So nh+nk = n(h+ k) = a− c. Thus, n divides a− c, so a ≡ c (mod n).
It follows that the congruence relation modulo n is transitive.

We conclude that the congruence relation modulo n is an equivalence relation.

We now formalize the notion of an equivalence class, with the goal of showing that an equivalence relation
partitions a set. Informally, a partition of a set X is a collection of disjoint subsets of X, whose union is
precisely X. This is formalized as follows.

Definition 20 (Partition). Let X be a set. A partition of X is a set P satisfying the following.

� Each member P ∈ P is a non-empty subset of X.

� For any two distinct P1, P2 ∈ P, P1 ∩ P2 = ∅.

�

⋃
P∈P

P = X.

Definition 21 (Equivalence Class). Let X be a set, and let ≡ be an equivalence relation on X. Fix x ∈ X.
The equivalence class of x is the set [x] = {s ∈ X : x ≡ s}. That is, [x] is the set of elements that are equivalent
to x.

Remark: Note that [x] = [s] for any s ∈ [x]. This follows from the transitivity of ≡, which will be proven
shortly.

7

Example 20. Fix n ≥ 1. The equivalence classes of the congruence relation modulo n are the classes
[0], [1], . . . , [n − 1]. Some additional tools from number theory are required to justify this, so we omit a
proof. Informally, the congruence relation modulo n is represented by the remainder classes upon division by
n.

As an equivalence relation is reflexive, every element of the set belongs to some equivalence class. Thus, in
order for an equivalence relation to partition the set, it suffices to show that the equivalence classes are pairwise
disjoint.

Proposition 1.6. Let ≡ be an equivalence relation on the set X. Let [x], [y] be distinct equivalence classes
under ≡. Then [x] ∩ [y] = ∅.

Proof. Suppose to the contrary that [x]∩ [y] ̸= ∅. As [x] and [y] are distinct and have non-empty intersection,
there exists z ∈ [y] − [x]. Without loss of generality, suppose y ∈ [x] ∩ [y]. So x ≡ y. Since z ∈ [y], we have
y ≡ z. By transitivity, x ≡ z, which implies z ∈ [x], a contradiction.

1.3 Proof by Induction

Many theorems of interest ask us to prove a proposition holds for all natural numbers. Verifying such state-
ments for all natural numbers is challenging, due to the fact that our domain is not just large but infinite.
Informally, proof by induction allows us to verify a small subset of base cases. Together, these base cases imply
the subsequent cases. Thus, the desired theorem is proven as a result.

Intuitively, we view the statements as a sequence of dominos. Proving the necessary base cases knocks (i.e.,
proves true) the subsequent dominos (statements). It is inescapable that all the statements are knocked down;
thus, the theorem is proven true.

The most basic form of induction is the Principle of Weak Induction.

Definition 22 (Principle of Weak Induction). Let P (n) be a proposition regarding an integer n, and let k ∈ Z
be fixed. If:

(a) P (k) holds; and

(b) for every m ≥ k, P (m) implies P (m+ 1),

then for every n ≥ k, P (n) holds.

The definition of the Principle of Weak Induction in fact provides a format for structuring proofs.

� First, we verify a single base case: for some k ∈ N, the statement P (k) holds.

� Second, we assume that P (m) holds for some integer m ≥ k. This step is known as the inductive
hypothesis, and it is indispensible for a proof by induction. We must and do use the fact that P (m) is
true when proving that P (m+ 1) holds.

� In our final step, we show that for an arbitrary m ≥ k that P (m) implies P (m + 1). This is known as
the inductive step.

We illustrate this proof technique with the following example.

Proposition 1.7. Fix n ∈ N. We have:

n∑
i=0

i =
n(n+ 1)

2
.

Proof. We prove this theorem by induction on n ∈ N.

� Base Case. Our first step is to verify the base case: n = 0. In this case, we have
∑n

i=0 i = 0. Note as
well that 0·1

2 = 0. Thus, the proposition holds when n = 0.

8

� Inductive Hypothesis. Now for our inductive hypothesis: fix k ≥ 0, and suppose
k∑

i=0

i =
k(k + 1)

2
.

� Inductive Step. We prove true for the k + 1 case. Consider:

k+1∑
i=0

i = (k + 1) +
k∑

i=0

i

By the inductive hypothesis,
∑k

i=0 i =
k(k+1)

2 . Now we have:

(k + 1) +

k∑
i=0

i

= (k + 1) +
k(k + 1)

2

=
2(k + 1) + k(k + 1)

2

=
(k + 1)(k + 2)

2
.

So by the Principle of Weak Induction, the result follows.

Remark: Notice that the inductive hypothesis was imperative in the inductive step. Once we used that
k∑

i=0

i =
k(k + 1)

2
, it was a matter of algebraic manipulation to obtain that

k+1∑
i=0

i =
(k + 1)(k + 2)

2
. As we have

verified a base case when n = 0 and proven that S(k) implies S(k + 1) for an arbitrary k ≥ 0, the Principle of
Weak Induction affords us that the proposition is true.

We now examine a second example applying the Principle of Weak Induction.

Proposition 1.8. For each n ∈ N and each x > −1, (1 + x)n ≥ 1 + nx.

Proof. The proof is by induction on n.

� Base Case. Consider the base case of n = 0. So we have (1 + x)n = 1 ≥ 1 + 0x = 1. So the proposition
holds at n = 0.

� Inductive Hypothesis. Fix k ≥ 0 and suppose that (1 + x)k ≥ 1 + kx.

� Inductive Step. We have that (1 + x)k+1 = (1 + x)k(1 + x). By the inductive hypothesis, (1 + x)k ≥
(1 + kx). So:

(1 + x)k(1 + x) ≥ (1 + kx)(1 + x) = 1 + (k + 1)x+ kx2 ≥ 1 + (k + 1)x.

The last inequality follows from the fact that kx2 is non-negative; so removing it from the right hand
side will not increase that side.

So by the Principle of Weak Induction, the result follows.

We next introduce the Principle of Strong Induction. Intuitively, strong induction is useful in proving theorems
of the form “for all n, P (n)” where P (k) alone does not neatly lend itself to forcing P (k+1) to be true. Instead,
it may be easier to leverage some subset of {P (0), . . . , S(k)} to force P (k + 1) to be true. Strong induction
allows us to use any or all of P (0), . . . , P (k) to prove that P (k + 1) is true. The Principle of Strong Induction
is formalized as follows.

Definition 23 (Principle of Strong Induction). Let P (n) be a proposition regarding an integer n, and let
k ∈ Z be fixed. If:

9

� P (k) is true; and

� for every m ≥ k, [P (k) ∧ P (k + 1) ∧ . . . ∧ P (m)] implies P (m+ 1),

then for every n ≥ k, the statement P (n) is true.

Just as with the Principle of Weak Induction, the Principle of Strong Induction provides a format for structuring
proofs.

� First, we verify for all base cases k, the statement P (k) holds. This ensures that subsequent cases which
rely on these early base cases are sound. For example, strong inductive proofs regarding graphs or
recurrence relations may in fact have several base cases, which are used in constructing subsequent cases.

� Second, we assume that for some integerm ≥ k, P (k), . . . , S(m) all hold. Notice our inductive hypothesis
using strong induction assumes that each of the previous cases are true, while the inductive hypothesis
when using weak induction only assumes P (m) to be true. Strong induction assumes the extra cases
because we end up using them.

� In our final step (the inductive step), we show that for an arbitrarym ≥ k that P (k)∧P (k+1)∧. . .∧P (m)
implies P (m+ 1).

Remark: The Principle of Weak Induction and the Principle of Strong Induction are equally powerful. That
is, any proof using strong induction may be converted to a proof using weak induction, and vice versa. In
practice, it may be easier to use strong induction, while weak induction may be clunky to use.

We illustrate how to apply the Principle of Strong Induction with a couple examples.

Proposition 1.9. Let f0 = 0, f1 = 1; and for each natural number n ≥ 2, let fn = fn−1 + fn−2. We have
fn ≤ 2n for all n ∈ N.

Proof. The proof is by strong induction on n ∈ N. Observe that f0 = 0 ≤ 20 = 1. Similarly, f1 = 1 ≤ 21 = 2.
So our base cases of n = 0, 1 hold. Now fix k ≥ 1; and suppose that for all n ∈ {0, . . . , k}, fn ≤ 2n. We
now prove that fk+1 ≤ 2k+1. By definition of our sequence, fk+1 = fk + fk−1. We now apply the inductive
hypothesis to fk and fk+1. Thus:

fk+1 ≤ 2k + 2k−1

= 2k
(
1 +

1

2

)
≤ 2k · 2 = 2k+1

As desired. So by the Principle of Strong Induction, the result follows.

Proposition 1.10. Every positive integer can be written as the product of a power of 2 and an odd integer.

Proof. The proof is by strong induction on n ∈ Z+. We have our base case n = 1. So n = 1 · 20. Thus, the
proposition holds for n = 1. Now fix k ≥ 1, and suppose the proposition holds true for all n ∈ [k]. We prove
true for the k + 1 case. We have two cases:

� Case 1: Suppose k + 1 is odd. Then k + 1 = (k + 1) · 20, and we are done.

� Case 2: Suppose instead k + 1 is even. Then k + 1 = 2h for some h ∈ Z+. By the inductive hypothesis,
h = m2j for some odd integer m and j ∈ N. Thus, k + 1 = m2j+1, and we are done.

So by the Principle of Strong Induction, the result follows.

10

1.3.1 A Brief Review of Asymptotics

The goal of this section is to provide a refresher for Big-O, Big-Omega, and Big-Theta notations, which will
be of key importance in complexity theory. The purpose of asymptotics is to provide intuitive bounds on the
growth rate of a function. In computer science, this function usually represents how much time or space is
required to solve a problem, with respect to the input size. For this reason, we restrict attention to functions
f : N → N.

Out of the asymptotic relations, Big-O is the most common. We are also most interested in upper bounds on
resource usage. How much time can this program take to run? How much space should be allocated to cover
all cases? Lower bounds are important, but generally of less practical concern. We begin with the definition
of Big-O.

Definition 24 (Big-O). Let f, g : N → N be functions. We say that f(n) ∈ O(g(n)) if there exist constants
c, k ∈ N such that f(n) ≤ c · g(n) for all n ≥ k.

Given functions f, g : N → N, there are three ways to prove that f(n) ∈ O(g(n)). The first is to use transitivity
of the Big-O relation. If there exists a third function h such that f(n) ∈ O(h(n)) and h(n) ∈ O(g(n)), then
we have f(n) ∈ O(g(n)). The second way is to use an induction argument. We select constants c and k, and
then prove by induction that they satisfy the definition of Big-O. The third approach is to use the limit test,
which we will introduce later. Let’s now consider an example of the Big-O relation.

Proposition 1.11. Let f, g : N → N be functions given by f(n) = 2n and g(n) = n!. Then f(n) ∈ O(g(n)).

Proof. Let c = 1 and k = 4. We show by induction that for every n ∈ N with n ≥ 4 that 2n ≤ n!. The base
case is n = 4, which yields 24 = 16 ≤ 4! = 24. Now suppose that 2n ≤ n! for all n ≤ m, where m is a fixed
natural number. We prove true for the m+1 case. By the inductive hypothesis, we have 2m ≤ m!. Multiplying
both sides by 2 yields 2m+1 ≤ 2 ·m!. As 2 ≤ 4 < m+ 1, we have 2m+1 ≤ (m+ 1) ·m! = (m+ 1)!. The result
follows by induction.

We define Big-Omega similarly as for Big-O.

Definition 25 (Big-Omega). Let f, g : N → N be functions. We say that f(n) ∈ Ω(g(n)) if there exist
constants c, k ∈ N such that f(n) ≥ c · g(n) for all n ≥ k.

Remark: Note that f(n) ∈ Ω(g(n)) if and only if g(n) ∈ O(f(n)). This fact is easy to prove by algebraic
manipulations and will be left to the reader. We now define Big-Theta.

Definition 26. Let f, g : N → N be functions. We say that f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈
Ω(g(n)).

Intuitively, functions f, g : N → N satisfying f(n) ∈ Θ(g(n)) grow at the same asymptotic rate. For example,
2n ∈ Θ(n), but 2n ̸∈ Θ(n2) as n2 ̸∈ O(2n). We introduce the following test.

Theorem 1.1 (Limit Comparison Test). Let f, g : N → N be functions. Let L = limn→∞
f(n)
g(n) . Then:

� f(n) ∈ Θ(g(n)) if 0 < L <∞

� f(n) ∈ O(g(n)) but f(n) ̸∈ Θ(g(n)) if L = 0

� f(n) ∈ Ω(g(n)) but f(n) ̸∈ Θ(g(n)) if L = ∞.

Remark: Intuitively, if L = 0, then g grows asymptotically faster than f so we conclude f(n) ∈ O(g(n)).
Similarly, if L = ∞, then f grows asymptotically faster than g and we conclude f(n) ∈ Ω(g(n)). If L = c, then
f and g grow at the same asymptotic rate and f(n) ∈ Θ(g(n)).

Let’s consider some examples.

Example 21. Let f(n) = 3n2 + n+ 1 and g(n) = n2. Consider:

L = lim
n→∞

f(n)

g(n)
= lim

n→∞

3n2

n2
+ lim

n→∞

n

n2
+ lim

n→∞

1

n2
= 3 + 0 + 0 = 3

Therefore, since L > 0 is a constant, f(n) ∈ Θ(g(n)).

11

Example 22. Let f(n) = 3n and g(n) = n!. Consider:

L = lim
n→∞

3n

n!

We evaluate L using the Ratio Test for Sequences, which states that for a sequence of positive real numbers
(an)n∈N, limn→∞

an+1

an
< 1 implies that limn→∞ an = 0. Consider:

L′ = lim
n→∞

3n+1n!

3n(n+ 1)!
= lim

n→∞

3

n+ 1
= 0

We conclude L = 0, so 3n ∈ O(n!).

Remark: Manipulating and bounding functions is a useful skill in this class, and more importantly in an
algorithms class. Series and sequence convergence tests from calculus are quite useful and worth reviewing.

1.4 Combinatorics and Graph Theory

1.4.1 Basic Enumerative Techniques

Problems from Combinatorics and Graph Theory arise frequently in computer science, especially the more the-
oretical areas. Combinatorics studies finite and countable discrete structures. We will focus on techniques for
counting structures satisfying a given property, which is the goal of enumerative combinatorics. Computer sci-
entists are often interested in finding optimal structures (combinatorial optimization). Many of these problems
are computationally difficult. Addtionally, many enumerative problems also suffer from issues of complexity.
The complexity class #P deals with the complexity of enumeration.

We begin with the Rule of Product and Rule of Sum. These two rules provide us the means to derive the basic
combinatorial formulas, as well as enumerate more complicated sets. We need not take the Rule of Sum and
Rule of Product as axioms. They can be proven quite easily. Recall the definition of a bijection (Definition
7). Two sets X and Y are defined to have the same cardinality if there exists a bijection f : X → Y . The
most elegant proofs of these two rules are bijective proofs. Inductive proofs also work, but are more tedious
and far less enlightening. In general, inductive proofs are excellent for showing a result is true, but are rather
unfulfilling. The exception to this is in graph theory. We will examine the bijective proofs for these two rules.

Before proving these results, let’s discuss the intuition. The Rule of Sum allows us to count the number of
elements in disjoint sets. Suppose you go to the store and have enough money for a single candy bar. If there
are only five candy bars on the shelf, then you have five choices. Your choices are all disjoint- you can choose
a Snickers or a Twix, but not both. Now suppose you and a friend go to the store and each have enough to
purchase a single candy bar. Each of you only has five selections, and your selection of a candy bar does not
affect your friend’s ability to select a candy bar (and vice versa). This is the idea behind independence. The
Rule of Product tells us that when two events are independent, that we multiply the number of outcomes for
each to determine the number of total outcomes. In other words, there are 25 ways for you and your friend to
each purchase one candy bar. We now formalize these notions.

Theorem 1.2 (Rule of Sum). Let X and Y be disjoint, finite sets, with n = |X| and m = |Y |. Then
|X ∪ Y | = |X|+ |Y |.

Proof. (Bijective) We map f : X ∪ Y → [n+m]. Let g : X → [n] and h : Y → [m] be bijections. Define f as
follows:

f(x) =

{
g(x) : x ∈ X

h(x) + |X| : x ∈ Y
(1)

We must show that f is a well-defined function (that it is a function and is uniquely determined for each
x ∈ X ∪ Y), and that it is a bijection. As X and Y are disjoint, x will be evaluated under g(x) or h(x) + |X|,
but not both. It follows from this and the fact that g and h are functions, that f is a well-defined function.

It will now be shown that f is a bijection. To show f is an injection, consider x1, x2 ∈ X ∪ Y such that
f(x1) = f(x2). First, observe that f(X) = [n] and f(Y) = [m + n] − [n]. So if f(x1) = f(x2), then

12

x1, x2 ∈ X or x1, x2 ∈ Y . If x1, x2 ∈ X, then f(x1) = g(x1) and f(x2) = g(x2) and g is a bijection. Similarly, if
x1, x2 ∈ Y , then f(x1) = h(x1)+ |X| and f(x2) = h(x2)+ |X|. As h is a bijection, x1 = x2. So f is an injection.

We now show f is a surjection. As g is a surjection, each n ∈ [|X|] has an x ∈ X ∪ Y such that f(x) = n.
Similarly, as h is a bijection, f maps to each n ∈ [n+m]− [n]. So f is a surjection. We conclude that f is a
bijection.

Theorem 1.3 (Rule of Product). Let X and Y be sets. Then |X × Y | = |X| · |Y |.

Proof. We construct a bijection f : X × Y → {0, . . . , |X| · |Y | − 1}. Let g : X → {0, . . . , |X| − 1} and
h : Y → {0, . . . , |Y | − 1} be bijections. Define f(x, y) = g(x) · |Y | + h(y). The Division Algorithm (which
we will discuss in the next section on Number Theory) guarantees that for a fixed integer q, any integer n
can be written as n = kq + r for some integer k and r ∈ {0, . . . , q − 1}. So suppose f(x1, y1) = f(x2, y2).
Setting q = |Y |, the Division Algorithm guarantees f(x1, y1) = f(x2, y2) = g(x1) · |Y | + h(y1). Since g and h
are bijections, x1 = x2 and y1 = y2. To show surjectivity, we select n ∈ {0, . . . , |X| · |Y | − 1} and apply the
Division Algorithm with q = |Y | to obtain n = kq + r for integers k, r with 0 ≤ r < q. As g, h are bijections,
x = g−1(k) and y = h−1(r). So f is a surjection. We conclude f is a bijection.

With the Rule of Product and Rule of Sum in mind, we are almost ready to begin with elementary counting
techniques. The first combinatorial object of interest is the permutation. Intuitively, a permutation is a
reordering of a sequence. Formally, we define it as follows.

Definition 27 (Permutation). Let X be a set. A permutation is a bijection π : X → X.

Example 23. Let X = {1, 2, 3}. The following are permutations of X: 123, 321, and 213. However, 331 is
not a permutation of X since 3 is repeated twice. For the permutation 213, the function π : X → X maps
π(1) = 2, π(2) = 1, π(3) = 3.

The natural question to ask is how many permutations exist on n elements. The answer is n! permutations.
We prove this formally using the Rule of Product.

Proposition 1.12. Let X be an n-element set. There are n! permutations of X.

Proof. Without loss of generality X = [n]. We define a permutation π : X → X. Observe that π(1) can
map to any of the n elements in X. As π is a bijection, only 1 can map to π(1). This leaves n − 1 elements,
to which π(2) can map. The selection of π(2) is independent of π(1); so by Rule of Product, we multiply to
obtain n(n − 1) ways of selecting π(1) and π(2). Proceeding in this manner, there are

∏n
i=1 i = n! possible

permutations.

Proposition 1.13. 0! = 1

Proof. There exists exactly one function f : ∅ → ∅, which is vacuously a bijection.

Remark: When we have an n element set and want to permute r ≤ n elements, there are
n!

(n− r)!
such

permutations.

We now consider the word problem. We fix an alphabet, which is a finite set of characters denoted Σ. Some
examples are Σ = {0, 1},Σ = {a, b, c}, and the English alphabet. A word is a sequence (order matters) of
characters formed from elements in Σ. Formally, a word of length n is an element ω ∈ Σn. The Rule of Product
immediately implies that there exist |Σ|n such words of length n. Some additional details will be provided in
proof of the next proposition.

Proposition 1.14. Let Σ be an alphabet. There are |Σ|n words of length n over Σ.

Proof. We consider the n positions of ω ∈ Σn given by ω1ω2 . . . ωn. Each ωi ∈ Σ. The selection of each ωi

is independent of the remaining characters in ω. So by rule of product, we multiply
∏n

i=1 |Σ| = |Σ|n such
words.

13

Example 24. If we consider Σ = {0, 1}, then Proposition 1.14 implies that there exist 2n binary strings of
length n.

On the surface, the permutation and word problems may be hard to distinguish. The key difference between
the two is the notion of replacement. In the permutation problem, we are given a fixed set of distinct elements.
Each element is to be used precisely once in the sequence. In contrast, the word problem provides a fixed set
of letters, each of which can be used for none, any, or all of the word’s characters. That is, each time a letter
is chosen from the alphabet, it is replaced by another instance of itsef to be used later. So 000 is a word but
not a permutation because 0 is repeated.

We now discuss combination problems, which describe discrete structures where order does not matter. The
simplest of these problems is the subset problem. Much like the permutation problem, the subset problem
considers a set X with |X| = n. We seek to determine how many subsets of order k from X exist. For example,
if X = {1, 2, 3}, there exist three subsets of X with two elements. These subsets are {1, 2}, {1, 3}, and {2, 3}.

Definition 28 (Binomial Coefficient). Let X be a set with n elements. Let k ∈ N. We denote the binomial
coefficient

(
n
k

)
= n!

k!·(n−k)! , which is read n choose k. We denote
(
X
k

)
as the set of all k-element subsets of X.

That is,
(
X
k

)
= {S ⊆ X : |S| = k}.

Proposition 1.15. The binomial coefficient
(
n
k

)
counts the number of k-element subsets of an n-element set.

Proof. We begin by permuting k elements from the set, which can be done in n!
(n−k)! ways. Define the equivalence

relation ≡ such that two k-element permutations σ, τ satsfy σ ≡ τ if and only if σ and τ are permutations of
the same k elements. Each equivalence class under ≡ thus has k! elements, so we divide out by k!. This yields(
n
k

)
, as desired.

Remark: We leave it as an exercise for the reader to verify that the relation ≡ in Proposition 1.15 is indeed
an equivalence relation..

Example 25. Recall the example of X = {1, 2, 3}. We counted three subsets from X of order 2. Evaluating(
3
2

)
= 3 confirms this result. The set

(
X
3

)
= {{1, 2}, {1, 3}, {2, 3}}.

We briefly introduce the permutation problem with repeated letters. Suppose we have a k-letter alphabet
(WLOG) [k], and want an n-letter permutation with ai instances of letter i. Then there are(

n

a1, a2, a3, . . . , ak

)
=

n!

a1! · a2! · · · ak!

such permutations. This is known as the multinomial coefficient. The idea is that if we have the same letter
at ai positions, we can reorder amongst those positions to obain the same permutation. So we divide ai! to
account for this.

Example 26. Consider the string MISSISSIPPI. There are
(

11
1,2,4,4

)
permutations of these leters.

We now discuss the multiset problem. The goal of the multiset problem is to count the ways of obtaining n
objects. These objects are chosen from finite classes and are replaceable. Suppose we visit Krispy Kreme to
purchase a dozen doughnuts. We can choose doughnuts from glazed, chocolate, and sprinkles. Because Krispy
Kreme makes their own doughnuts, there is an infinite supply of each type. The goal is to count the number of
ways we can order a dozen doughnuts. The order is the same, whether we have two chocolate doughnuts then
a glazed doughnut, or the glazed doughnut between the two chocolate ones. In a sense, the multiset problem
is analogous to the word problem where order does not matter. We prove below how to enumerate these objects.

Proposition 1.16 (Pipes and Dividers). Let n, k ∈ N. There exist
(
n+k−1

n

)
multisets with n elements each

drawn from [k].

Proof. Consider the set of permutations over n ⋆ symbols and k−1 | symbols, which we denote R(⋆n, |k−1). Let
M([k]) be the set of multisets with n elements drawn from [k]. We construct a bijection from f : R(⋆n, |k−1) →
M([k]). Each element of R(⋆n, |k−1) is of the form ω = ⋆a1 | ⋆a2 | . . . |⋆ak , where

∑k
i=1 ai = n. We map ω to

14

the multiset (ai)
k
i=1 ∈ M([k]). It suffices to show this is a bijection. Consider an arbitrary multiset in M([k])

given by the sequence (ai)
k
i=1, where ai denotes the number of element i in the multiset. Under f , the element

⋆a1 | ⋆a2 | . . . |⋆ak from R(⋆n, |k−1) maps to the multiset given by (ai)
k
i=1. So f is a surjection.

Now suppose that f(ω1) = f(ω2) map to the same multiset given by the sequence (ai)
k
i=1. By the definition of

f , ω1 = ω2 = ⋆a1 | ⋆a2 | . . . |⋆ak . So f is a bijection. Recall from the discussion on the multinomial coefficient,
that |R(⋆n, |k−1)| =

(
n+k−1
n,k−1

)
=
(
n+k−1
k−1

)
=
(
n+k−1

n

)
. As f is a bijection, there are

(
n+k−1

n

)
multisets with n

elements each drawn from [k].

We now consider some examples.

Example 27. Recall the doughnut problem above, where we seek to purchase a dozen doughnuts chosen from
glazed, chocolate, and sprinkles. There are

(
12+3−1

12

)
ways of ordering a dozen doughnuts from these options.

Example 28. Now consider a second example. Suppose there are 10 red candies and 7 blue candies, and we
need to order the candies in a single-file line. We only care about the color of the candies in our order (so two
red candies are treated as identical, as are two blue candies). How many single file lines are there? In order
to count the single file lines, we reduce to the multiset problem. We view the blue candies as the dividers,
separating multisets of red candies. Since there are 7 blue candies, we have 8 multisets. So the answer is

(
10+7
10

)
single file lines.

1.4.2 Combinatorial Proofs

The goal of this section is two-fold. First, we apply the enumerative techniques from the previous section to
more complicated examples. Second, we examine proofs by double counting.

Example 29. (a) How many four letter words using the alphabet [n] satisfy wi ̸= wi+1 for each i ∈ [3]? (b)
How many of these words also satisfy w1 ̸= w4?

(a) We select w1 with no restrctions, in n ways. This leaves n − 1 letters, and we choose one for w2. The
selection of w2 is independent of w1. By similar logic, there exist n− 1 selections for w3 and w4. So by rule of
product, we multiply: n(n− 1)3.

(b) We again select w1 in n ways. Recall that there are n− 1 possible selections for w2, which are independent
of the selection for w1. We now have two cases to consider: w1 = w3 and w1 ̸= w3. If w1 = w3, then there are
n− 1 selections for w4, yielding n(n− 1)2 words in this case, by rule of product. If w1 ̸= w3, there are (n− 2)
possible selections for w3, as w3 ̸= w2 as well. As w1 and w3 are distinct, this yields (n− 2) possible selections
for w4. By rule of product, we multiply to obatin n(n − 1)(n − 2)2 possible words when w1 ̸= w3. The cases
when w1 = w3 and w1 ̸= w3 are disjoint; so by rule of sum, we add n(n− 1)2 + n(n− 1)(n− 2)2, which counts
the number of desired words.

Let us now discuss combinatorial proofs. There are two types of combinatorial proofs: bijection proofs and
proofs by double counting. The notion of a bijection proof has been discussed extensively. The proof by double
counting technique will now be introduced. Consider two expressions, which appear to be unrelated or in which
an algebraic proof is difficult. A proof by double counting is used to show that both expressions count the
same set of objects, which implies they must be equal. They have the advantage of being more elegant than
algebraic proofs, as well as providing substantial insight into the problem itself.

We will prove the Binomial Theorem, which is a simple yet extremely powerful result. There is an algebraic
proof by induction, which is quite ugly and unintuitive. A combinatorial proof by double counting is far more
elegant.

Theorem 1.4 (Binomial Theorem). (x+ y)n =
∑n

i=0

(
n
i

)
xiyn−i

Proof. On the right hand side, there are
(
n
i

)
instances of xiyn−i for each i ∈ {0, . . . , n}. We show the left-

hand side expands to the same expression. Expanding (x + y)n, each term is of the form xiyn−i for some
i ∈ {0, . . . , n}. Each factor (x+ y) contributes either an x or a y (but not both) to xiyn−i. As multiplication
commutes, the order in which the contributing factors of x are chosen does not matter. Selection of the factors
contributing x fixes the selections of the factors contributing y. There are

(
n
i

)
ways to select factors contributing

x, so the coefficient of xiyn−i is
(
n
i

)
. By rule of sum, we add up over all such i to obtain

∑n
i=0

(
n
i

)
xiyn−i.

15

The binomial theorem and binomial identities are the source of numerous entertaining examples for combina-
torial proofs. We examine a couple simple identities.

Proposition 1.17.
∑n

i=0

(
n
i

)
= 2n

Proof (Binomial Theorem). By the Binomial Theorem, 2n = (1 + 1)n =
∑n

i=0

(
n
i

)
.

Proof (Double Counting). We prove by double counting. Recall that
(
n
i

)
= |{S ⊆ [n] : |S| = i}|. By rule of

sum, we add up over all such i ∈ {0, . . . , n}. So the left-hand side counts the number of subsets of an n-element
set (WLOG [n]). Now consider the right hand-side. Fix a subset S. Each element i ∈ [n] can either belong
to S, or be absent from S. This choice is independent for each i ∈ [n]; so by rule of product, we multiply to
obtain 2n possible subsets of [n]. We conclude that

∑n
i=0

(
n
i

)
= 2n.

Remark: There exists an explicit bijection between 2[n] and {0, 1}n based on the observation in the above
proof for counting the right-hand side. We construct a binary string w of length n corresponding to S ⊆ [n].
We set wi = 0 if i ̸∈ S and wi = 1 if i ∈ S. This offers a bijective proof of Proposition 1.17.

Proposition 1.18.
∑n

i=0

(
n
i

)
2i = 3n

Proof. The proof is by double counting. The right hand-side counts the number of strings of length n over the
alphabet [3]. Now consider the left-hand side. Fix i ∈ {0, . . . , n}. We select i slots which can be done in

(
n
i

)
ways, and populate these i slots with letters from {0, 1}. This fixes the remaining n− i slots with the character
2. There are 2i possible ways to populate these i slots, independent of the selection of the slots. So by rule of
product, we multiply

(
n
i

)
2i. By rule of sum, we add up over all such i to obtain the left-hand side.

Proposition 1.19. k
(
n
k

)
= n

(
n−1
k−1

)
= (n− k + 1)

(
n

k−1

)
Proof. The proof is by double counting. We consider an n-person population, and we select a k-person com-
mittee with a president. We begin by selecting the committee members in

(
n
k

)
ways, then select a seat for the

president in
(
k
1

)
= k ways. These selections are independent; so by rule of product, we multiply to obtain k

(
n
k

)
.

Now consider the term n
(
n−1
k−1

)
expression. The n term counts the number of ways to select the president, while

the
(
n−1
k−1

)
term counts the number of ways to select the remainder of the committee from the remaining n− 1

people. These selections are independent; so by rule of product, we multiply.

Finally, consider (n − k + 1)
(

n
k−1

)
. The term

(
n

k−1

)
counts the number of ways of selecting the committee,

excluding the president. Finally, the (n − k + 1) term counts the number of selections of the president from
the remaining n− k + 1 people. These selections are independent; so by rule of product, we multiply.

1.4.3 Graph Theory

To quote Bud Brown, “Graph theory is a subject whose deceptive simplicity masks its vast applicability.”
Graph theory provides simple mathematical structures known as graphs to model the relations of various
objects. The applications are numerous, including efficient storage of chemicals (graph coloring), optimal
assignments (matchings), distribution networks (flows), efficient storage of data (tree-based data structures),
and machine learning. In automata theory, we use directed graphs to provide a visual representation of our
machines. Many elementary notions from graph theory, such as path-finding and walks, come up as a result.
In complexity theory, many combinatorial optimization problems of interest are graph theoretic in nature.
Therefore, it is important to discuss basic notions from graph theory. We begin with the basic definition of a
graph.

Definition 29 (Simple Graph). A simple graph is a two-tuple G(V,E) where V is a set of vertices and E ⊆
(
V
2

)
.

By convention, a simple graph is referred to as a graph, and an edge {i, j} is written as ij. In simple graphs,
ij = ji. Two vertices i, j are said to be adjacent if ij ∈ E(G). Now let’s consider an example of a graph.

Example 30. Let G(V,E) be the graph where V = [6] and E = {12, 15, 23, 25, 34, 45, 46}. This graph is
pictured below.

16

We now introduce several common classes of graphs.

Definition 30 (Complete Graph). The complete graph, denoted Kn, has the vertex set V = [n] and edge set
E =

(
V
2

)
. That is, Kn has all possible edges between vertices.

Example 31. The complete graph on five vertices K5 is pictured below.

Definition 31 (Path Graph). The path graph, dentoed Pn, has vertex set V = [n] and the edge set E =
{{i, i+ 1} : i ∈ [n− 1]}.

Example 32. The path on three vertices P3 is shown below.

1 2 3

Definition 32 (Cycle Graph). Let n ≥ 3. The cycle graph, denoted Cn, has the vertex set V = [n] and the
edge set E = {{i, i+ 1} : i ∈ [n− 1]} ∪ {{1, n}}.

Example 33. Intuitively, Cn can be thought of as the regular n-gon. So C3 is a triangle, C4 is a quadrilateral,
and C5 is a pentagon. The graph C6 is pictured below.

Definition 33 (Wheel Graph). Let n ≥ 4. The wheel graph, denoted Wn, is constructed by joining a vertex
n to each vertex of Cn−1. So we take Cn−1∪̇n and add the edges vn for each v ∈ [n− 1].

Example 34. The wheel graph on seven vertices W7 is pictured below.

17

Definition 34 (Bipartite Graph). A bipartite graph G(V,E) has a vertex set V = X∪̇Y , with edge set
E ⊆ {xy : x ∈ X, y ∈ Y }. That is, no two vertices in the same part of V are adjacent. So no two vertices in
X are adjacent, and no two vertices in Y are adjacent.

Example 35. A common class of bipartite graphs include even-cycles C2n. The complete bipartite graph is
another common example. We denote the complete bipartite graph as Km,n which has vertex partitions X∪̇Y
where |X| = m and |Y | = n. The edge set E(Km,n) = {xy : x ∈ X, y ∈ Y }. The graph K3,3 is pictured below.

Definition 35 (Hypercube). The hypercube, denoted Qn, has vertex set V = {0, 1}n. Two vertices are
adjacent if the binary strings differ in precisely one component.

Example 36. The hypercube Q2 is isomorphic to C4 (isomorphism roughly means that two graphs are the
same, which we will formally define later). The hypercube Q3 is pictured below.

Definition 36 (Connected Graph). A graph G(V,E) is said to be connected if for every u, v ∈ V (G), there
exists a u−v path in G. A graph is said to be disconnected if it is not connected; and each connected subgraph
is known as a component.

Example 37. So far, every graph presented has been connected. If we take two disjoint copies of any of the
above graphs, their union forms a disconnected graph.

Definition 37 (Tree). A Tree is a connected, acyclic graph.

Example 38. A path is an example of a tree. Additional examples include the binary search tree, the binary
heap, and spanning trees of graphs. Computer science students should be familiar with all these examples.

Definition 38 (Degree). Let G(V,E) be a graph and let v ∈ V (G). The degree of v, dentoed deg(v) is the
number of edges containing v. That is, deg(v) = |{vx : vx ∈ E(G)}|.

Example 39. Each vertex in the Cycle graph Cn has degree 2. In Example 17, deg(6) = 1 and deg(5) = 3.

Theorem 1.5 (Handshake Lemma). Let G(V,E) be a graph. We have
∑

v∈V (G) deg(v) = 2|E(G)|.

Proof. The proof is by double counting. The term deg(v) counts the number of edges incident to v. Each edge
has two endpoints v and x, for some other x ∈ V (G). So the edge vx is double counted in both deg(v) and
deg(x). Thus,

∑
v∈V (G) deg(v) = 2|E(G)|.

18

Remark: The Handshake Lemma is a necessary condition for a graph to exist. That is, all graphs satisfy
the Handshake Lemma. Consider the following: does there exist a graph on 11 vertices each having degree
5? By the Handshake Lemma, 11 · 5 = 2|E(G)|. However, 55 is not even, so no such graph exists. Note that
the Handshake Lemma is not a sufficient condition. That is, there exist degree sequences such as (3, 3, 1, 1)
satisfying the Handshake Lemma which are not realizable by any graph. Theorems such as Havel-Hakimi and
Erdós-Gallai provide conditions that are both sufficient and necessary for a degree sequence to be realizable
by some graph.

Next, the notion of a walk will be introduced. Walks on graphs come up frequently in automata theory.
Intuitively, the sequence of transitions in an automaton is analogous to a walk on a graph. Additionally,
algorithms like the State Reduction procedure and Brzozowski Algebraic Method that convert finite state
automata to regular expressions are based on the idea of a walk on a graph.

Definition 39 (Walk). LetG(V,E) be a graph. A walk of length n is a sequence (vi)
n
i=0 such that vivi+1 ∈ E(G)

for all i ∈ {0, . . . , n− 1}. If v0 = vn, the walk is said to be closed.

Let us develop some intuition for a walk. We start a given vertex v0. Then we visit one of v0’s neighbors,
which we call v1. Next, we visit one of v1’s neighbors, which we call v2. We continue this construction for the
desired length of the walk. The key difference between a walk and a path is that a walk can repeat vertices,
while all vertices in a path are distinct.

Example 40. Consider a walk on the hypercube Q3. The sequence of vertices (000, 100, 110, 111, 101) forms
a walk, while (000, 100, 110, 111, 101, 001, 000) is a closed walk. The sequence (000, 111) is not a walk because
000 and 111 are not adjacent in Q3.

We now define the adjacency matrix, which is useful for enumerating walks of a given length.

Definition 40 (Adjacency Matrix). Let G(V,E) be a graph. The adjacency matrix A is an n × n matrix
where:

Aij =

{
1 : ij ∈ E(G)

0 : ij ̸∈ E(G)
(2)

Example 41. Consider the adjacency matrix for the graph K5:
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 (3)

Theorem 1.6. Let G(V,E) be a graph, and let A be its adjacency matrix. For each n ∈ Z+, An
ij counts the

number of walks of length n starting at vertex i and ending at vertex j.

Proof. The proof is by induction on n. When n = 1, we have A. By definition Aij = 1 iff ij ∈ E(G). All walks
of length 1 correspond to the edges incident to i, so the theorem holds true when n = 1. Now fix k ≥ 1 and
suppose that for each m ∈ [k] that Am

ij counts the number of i− j walks of length m. The k + 1 case will now
be shown.

Consider Ak+1 = Ak · A by associativity. By the inductive hypothesis, Ak
ij and Aij count the number of i− j

walks of length k and 1 respectively. Observe that:

Ak+1
ij =

n∑
x=1

Ak
ixAxj

So Ak
ix counts the number of ix walks of length k, and Axj = 1 iff xj ∈ E(G). Adding the edge xj to an i− x

walk of length k forms an i− j walk of length k + 1. The result follows by induction.

We prove one more theorem before concluding with the graph theory section. In order to prove this theorem,
the following lemma (or helper theorem) will be introduced first.

19

Lemma 1.1. Let G(V,E) be a graph. Every closed walk of odd length at least 3 in G contains an odd-cycle.

Proof. The proof is by induction on the length of the walk. Note that a closed walk of length 3 forms a K3.
Now fix k ≥ 1 and suppose the that any closed walk of odd length up to 2k + 1 has an odd-cycle. We prove
true for walks of length 2k + 3. Let (vi)

2k+3
i=0 be a walk closed of odd length. If v0 = v2k+3 are the only

repeated vertices, then the walk itself is an odd cycle and we are done. Otherwise, suppose vi = vj for some
0 ≤ i < j ≤ 2k + 3. If the walk (vt)

k
t=i is odd, then there exists an odd cycle by the inductive hypothesis.

Otherwise, the walk W = (v0, . . . , vi, vj+1, . . . , v2k+3) is of odd length at most 2k + 1. So by the inductive
hypothesis, W has an odd cycle. So the lemma holds by induction.

We now characterize bipartite graphs.

Theorem 1.7. A graph G(V,E) is bipartite if and only if it contains no cycles of odd length.

Proof. Suppose first that G is bipartite with parts X and Y . Now consider a walk of length n. As no vertices
in a fixed part are adjacent, only walks of even lengths can end back in the same part as the staring vertex.
A cycle is a walk where all vertices are distinct, save for v0 and vn which are the same. Therefore, no cycle of
odd length exists in G.

Conversely, suppose G has no cycles of odd length. We construct a bipartition of V (G). Without loss of
generality, suppose G is connected. For if G is not connected, we apply the same construction to each connected
component. Fix the vertex v. Let X = {u ∈ V (G) : d(u, v) is even }, where d(u, v) denotes the distance or
length of the shortest uv path. Let Y = {u ∈ V (G) : d(u, v) is odd }. Clearly, X ∩ Y = ∅. So it suffices
to show no vertices within X are adjacent, and no vertices within Y are adjacent. Fix v ∈ X and suppose
to the contrary that two vertices in y1, y2 ∈ Y are adjacent. Then there exists a closed walk of odd length
(v, . . . , y1, y2, . . . v). By Lemma 1.1, G must contain an odd-cycle, a contradiction. By similar argument, no
vertices in X can be adjacent. So G is bipartite with bipartition X∪̇Y .

1.5 Number Theory

Number Theory is one of the oldest branches of mathematics, with results dating back thousands of years.
An incredibly pure and beautiful subject, Number Theory was considered useless until the 20th century with
the development of public-key cryptography. In the most general sense, Number Theory studies various sets
of numbers. The positive integers, particularly the prime numbers, are of particular importance. The prime
numbers are the building blocks of the positive integers, which is the Fundamental Theorem of Arithmetic.
Determining the prime factorization of a positive integer is a computationally difficult problem, though not
known to be NP-Complete. Cryptography and computational number theory are active areas of research in
complexity theory and quantum computing, so they are worth mentioning here. It is quite possible to make
significant headway in Number Theory with three tools: the Euclidean algorithm, the Pigeonhole Principle,
and the Chinese Remainder Theorem. We introduce introduce the Euclidean Algorithm and Pigeonhole Prin-
ciple here.

We begin with the Pigeonhole Principle.

Theorem 1.8 (Pigeonhole Principle). Suppose we have k ∈ Z+ bins and n > k objects. Then there exists a
hole containing at least two objects.

Next, we introduce the Well-Ordering Principle. This is an example of a property which seems obvious at a first
glance. While it is often taken as an axiom, the Well-Ordering Principle can be proven from first principles. We
do so here to illustrate how little should be taken for granted. When working at the foundations of mathematics
and computing, much of what is considered obvious in conventional sets may behave differently in the general
case. Clear definitions and foundational proofs lay the groundwork upon which we build a theory.

Theorem 1.9 (Well-Ordering Principle). Every non-empty S ⊆ N contains a minimum element.

Proof. We first show that for each n ∈ N, every non-empty subset of {0, . . . , n} contains a minimum element.
The proof is by induction on n. When n = 0, the only non-empty subset is {0}. So 0 is the minimum element
and we are done. Now fix k ∈ N and suppose that for every integer 0 ≤ j ≤ k, every non-empty subset in
{0, . . . , j} has a minimum element. We prove true for the k + 1 case. Let S ⊆ {0, . . . , k + 1}. If S = {k + 1},
then k + 1 is the minimum element and we are done. Otherwise, S ∩ {0, . . . , k} is non-empty; and so by the

20

inductive hypothesis, S ∩ {0, . . . , k} has a minimum element x < k + 1, which is also the minimum element of
S. So by induction, we have that for each n ∈ N, every non-empty subset of {0, . . . , n} contains a minimum
element.

We now consider an arbitrary, non-empty S ⊆ N. Pick x ∈ S and consider {0, . . . , x}. By the above result,
S ∩ {0, . . . , x} is non-empty and has a minimum element, which is the minimum element of S.

Next, we introduce the notion of divisibility.

Definition 41 (Divisibility). Let a, b ∈ Z. We say that a divides b, denoted a
∣∣b if there exists a q ∈ Z such

that aq = b. If a does not divide b, we denote this a ̸
∣∣b.

Example 42. Suppose a = 2 and b = 4. We observe that 2
∣∣4, selecting q = 2. However, 3 ̸

∣∣5.
The division algorithm is the next big result. Recall the long division procedure from grade school. This
procedure gives us the integers modulo n. It also implies the Euclidean algorithm, as well as the correctness
of our various number bases such as the binary number system and our standard decimal number system.

Theorem 1.10 (Division Algorithm). Let a, b ∈ Z such that b > 0. Then there are unique integers q and r
such that a = bq + r with 0 ≤ r < b. We refer to q as the quotient and r as the remainder.

Proof. Let Q = {a − bq ≥ 0 : q ∈ Z}. If a > 0, a ∈ Q (we set q = 0). If a < 0, then a − ba ≥ 0 and so
a − ba ∈ Q. So Q is non-empty. Thus, by the Well-Ordering principle, Q has a minimum. Let q∗ be the
associated q ∈ Z such that a− bq ≥ 0 achieves its minimum. Let r∗ = a− bq∗. Observe that r∗ ≤ b; otherwise,
we have a − bq∗ − b ≥ 0, which implies that a − b(q∗ + 1) ≥ 0, contradicting the fact that a − bq∗ was the
minimum element of q. It suffices to show q∗ and r∗ are unique.

Suppose that there exist q1, r1, q2, r2 ∈ Z such that 0 ≤ r1, r2 < b and a = bq1 + r1 = bq2 + r2. Then
b(q1 − q2) = r2 − r1, so b

∣∣(r2 − r1). Since −b < r2 − r1 < b, it follows that r2 − r1 = 0 =⇒ r2 = r1. So
q1 − q2 = 0 as well, which implies q1 = q2. And so we have uniqueness.

Example 43. Recall Example 29. We have 2
∣∣4; which, by the division algorithm, we can write as 4 = 2(2)+0

setting q = 2, r = 0. For the example of 3 ̸
∣∣5, we write 5 = 3(1) + 2, setting q = 1, r = 2.

Number base expansion is a familiar concept from basic arithmetic. Consider the base-10 number 123. We
have 3 in the ones place, 2 in the tens place, and 1 in the hundreds place. So 123 = 100 + 20 + 3 =
102(1) + 101(2) + 101(3). In fact, we can write any integer in a given number base, just like we did with 123
in base-10. The division algorithm implies this result.

Theorem 1.11. Let b ∈ Z+ with b > 1. Then every positive integer n can be written uniquely in the form:

n = akb
k + ak−1b

k−1 + . . .+ a1b+ a0

where k ∈ N, each aj ∈ {0, . . . , b− 1}, and ak ̸= 0.

Proof. Let q0, a0 ∈ Z with 0 ≤ a0 < b according to the Division Algorithm satisfying n = bq0+a0. We construct
a sequence of quotients and remainders as follows. For each i > 0, let qi and ai be integers with 0 ≤ ai ≤ b− 1
according to the Division Algorithm, satisfying q0 = bqi + ai. As b > 1, the sequence of quotients consists of
strictly decreasing positive integers. So we achieve a quotient qk = 0, which is where the process terminates.

From the first equation, we have n = bq0 + a0. We substitute q0 = bq1 + a1 to obtain n = b(bq1 + a1) + a0 =
b2q1 + ba1 + a0. For each i ∈ {2, . . . , n− 1}, we substitute qi = bqi−1 + ai−1. This results in:

n = akb
k + ak−1b

k−1 + . . .+ a1b+ a0

We now show this sequence (ai)
k
i=0 is unique. Suppose to the contrary that there exists a second sequence

(ci)
k
i=0 satisfying:

n = ckb
k + ck−1b

k−1 + . . .+ c1b+ c0

We consider:
(ck − ak)b

k + (ck−1 − ak−1)b
k−1 + . . .+ (c1 − a1)b+ (c0 − a0)

21

Then there exists an index j such that aj ̸= cj . Without loss of generality, suppose j is the smallest such index.
We factor:

bj(ck − akb
k−j + (ck−1 − ak−1)b

k−j−1 + . . .+ (cj+1 − aj+1)b+ cj − aj)

So bj
∣∣(cj − aj), which implies b

∣∣(cj − aj). However, −b < cj − aj < b, so cj = aj . This implies that ci = ai for
each i ∈ {0, . . . , k}. So the expansion is unique.

The next result of interest concerns divisors. A natural question is to find common divisors between two
integers. Of particular interest is the greatest common divisor and how to efficiently compute it. As it turns
out, this is a computationally easy problem, taking O(log(n)) time to solve.

Definition 42 (Euclidean Algorithm). The Euclidean Algorithm takes as input two positive integers a and
b and returns their greatest common divisor. The Euclidean Algorithm works by repeatedly applying the
Division Algorithm until the remainder is 0.

f unc t i on gcd (i n t e g e r a , i n t e g e r b) :
i f b > a :

return gcd (b , a)
while b ̸= 0 :

t := b
b := a mod b
a := t

return a

Theorem 1.12. The Euclidean Algorithm terminates and returns the greatest common divisor of the two
inputs.

Proof. Without loss of generality, suppose a ≥ b. Otherwise, the first iteration swaps a and b. The proce-
dure applies the division algorithm repeatedly, resulting in a sequence of dividends, divisors, and remainders
(ai, bi, ri)

n
i=0 where a0 = a, b0 = b and r0 is the remainder from the Division Algorithm satisfying a = bq + r0.

For each i > 0, we set ai = bi−1, bi = ri−1, and ri to satisfy the Division Algorithm: ai = bik + ri. As the
bi > bi+1 for all i and each ri satisfies 0 ≤ ri < bi, we have that the remainders tend to 0. Let n be the first
term in which ri = 0. On the next iteration, we have b = ri = 0, so the algorithm terminates.

Now let a, b ∈ Z+ satisfying a ≥ b, and let r satisfy the Division Algorithm: a = bq+ r. It suffices to show that
gcd(a, b) = gcd(b, r), as the Euclidean algorithm computes gcd(ri, ri+1) for all i ∈ [n− 1]. Let d be a common
divisor of a and b. Then d

∣∣(a − bq), which implies d
∣∣r. So d is a common divisor of b and r. Now let k be a

common divisor of b and r. Then we have k
∣∣(bq + r), which implies k is a common divisor of a and b. Thus,

gcd(a, b) = gcd(b, r).

Example 44. We use the Euclidean Algorithm to compute gcd(16, 6).

� 16 = 6(2) + 4 (a0 = 16, b0 = 6, r0 = 4)

� 6 = 4(1) + 2 (a1 = 6, b1 = 4, r1 = 2)

� 4 = 2(2) + 0 (a2 = 4, b2 = 2, r2 = 0)

At iteration 3, we would have b3 = r2 = 0, so the algorithm terminates. We observe gcd(16, 6) = 2.

Remark: We can write gcd(a, b) as a linear combination of a and b. That is, there exist integers x, y such
that ax+ by = gcd(a, b). The proof is omitted, but the construction relies on backtracking from the Euclidean
algorithm.

Now that we have a basic understanding of divisors, the notion of a prime number will be introduced. Prime
numbers are of great theoretical interest and are incredibly important in cryptography.

Definition 43 (Prime Number). An integer p > 1 is said to be prime if it is not divisible by any positive
integer other than 1 and itself. An integer that is not prime is said to be composite.

Example 45. The numbers 2, 3, 5, and 7 are all prime, but 9 is composite as 3
∣∣9.

22

In particular, every positive integer n > 1 has a prime divisor. Furthermore, there are infinitely many primes.
The proofs for these two facts will be omitted here, but are standard proofs in elementary number theory.
Instead, we prove the Fundamental Theorem of Arithmetic, which gives us prime factorization. In order to do
so, we need two lemmas first.

Lemma 1.2. Let a, b, c ∈ Z+ such that gcd(a, b) = 1 and a
∣∣bc. Then a

∣∣c.
Proof. As gcd(a, b) = 1, there exist integers x, y such that ax + by = 1. Multiplying both sides by c yields
axc+ byc = c. As a

∣∣axc and a∣∣byc (since a∣∣bc), it follows that a∣∣c.
Lemma 1.3. Let p be a prime. If p divides

∏n
i=1 ai, where each ai ∈ Z+, then there exists a t ∈ [n] such that

p
∣∣at.

Proof. The proof is by induction on n. When n = 1, p
∣∣ai and we are done. Now suppose the lemma holds true

up to some k ≥ 1. We prove true for the k + 1 case. Suppose p
∣∣∏n+1

i=1 ai, where each ai ∈ Z+. If p
∣∣∏n

i=1 ai,
then p

∣∣at for some t ∈ [n] by the inductive hypothesis. Otherwise, gcd(p,
∏n

i=1 ai) = 1 as p is prime. So by
Lemma 1.2, p

∣∣an+1. The result follows by induction.

Theorem 1.13 (Fundamental Theorem of Arithmetic). Every positive integer greater than 1 can be written
uniquely as a product of primes, with the prime factors in the product written in nondecreasing order.

Proof. It will first be shown that every positive integer greater than 1 has a prime decomposition. Suppose to
the contrary that there exists a positive integer that cannot be written as the product of prime factors. By
Well-Ordering, there exists a smallest such n. As n is not divisible by any primes, n itself is not prime. So
n = ab, for a, b ∈ Z+ and 1 < a, b < n. Because a, b < n, both a and b are the product of primes. So n is a
product of primes, a contradiction.

We now show the uniqueness of prime decomposition by contradiction. Let m be a positive integer greater than
1 with prime decompositions n =

∏s
i=1 pi =

∏t
j=1 qj , where p1 ≥ p2 ≥ . . . ≥ ps and q1 ≥ q2 ≥ . . . ≥ qt. Remove

the common primes between the two factorizations and consider: pi1pi2 . . . piu = qj1qi2 . . . qiv . By Lemma 1.3,
each pik divides some prime qjh , contradicting the fact the definition of a prime number.

The congruence relation will now be introduced. The notion of congruences was introduced by Gauss at the
start of the 19th century. The congruence relation enables us to process the divisibility relation in terms of
equivalences. Formally, we have the following definition.

Definition 44 (Congruence Relation). Let a, b, n ∈ Z+. We say that a ≡ b (mod n) if and only if n
∣∣(a− b).

Remark: It can easily be verified that the congruence relation ≡ is an equivalence relation. This is an exercise
for the reader (and a potential homework problem for my students). Note that the congruence relation is
closed under addition, subtraction, and multiplication. That is, if a ≡ b (mod n) and c ≡ d (mod n), then
a+ c ≡ b+ d (mod n), a− c ≡ b− d (mod n), and ac ≡ bd (mod n).

Intuitively, the congruence relation allows us to perform basic operations of addition and multiplication on the
remainder classes after division by n. We define the integers modulo n as follows:

Definition 45 (Integers Modulo n). Let n ∈ Z+. The integers modulo n, denoted Zn or Z/nZ, are the set of
residues or congruence classes {0, 1, . . . , n− 1}, where i ⊆ Z+ is the set i = {x ∈ Z : x ≡ i (mod n)}.

One important question is how to efficiently calculate congruences such as 29,999,999,997 (mod 11). This is too
large to process by hand, and it is memory intensive to try and automate these computations ignorantly. This
motivates our next Finally, we prove Fermat’s Little Theorem, which is of great practical as well as theoretical
importance.

Theorem 1.14 (Fermat’s Little Theorem). Let p be a prime and let a ∈ [p− 1]. Then ap−1 ≡ 1 (mod p).

Proof. Suppose we have an alphabet Λ with a letters. Consider the set of strings Λp. There exist precisely
a strings consisting of the same letter repeated p times. Consider an arbitrary string ω = ω1ω2 . . . ωp. The
cyclic rotation of ω by j places is ωjωj+1 . . . ωpω1 . . . ωj−1. Define the equivalence relation ∼ on Λp such that
two strings ω ∼ τ if and only if ω is a cyclic rotation of τ . Strings consisting of a single character repeated p
times each belong to an equivalence class of order 1. The remaining strings each belong to equivalence classes
of order p. There are a equivalence classes of order 1, leaving ap − a remaining strings. Let k be the number
of equivalence classes of order p. So pk = ap − a, which is equivalent to ap ≡ a (mod p).

23

Remark: This proof is very group-theoretic in nature, though we are hiding the group theory. More technically,
we are considering the action of the cyclic group Zp on Λp, and evaluating the orbits. We will discuss group
actions in our exposition on group theory.

Example 46. Now let’s use Fermat’s Little Theorem to evaluate 29,999,999,997 (mod 11). By rule of exponents,
29,999,999,997 = 29,999,999,990 ·27. As 9, 999, 999, 990 is a multiple of 10, we have that 29,999,999,990 = (210)999,999,999

by rules of exponents. By Fermat’s Little Theorem, 210 ≡ 1 (mod 11), which implies that (210)999,999,999 ≡
1999,999,999 ≡ 1 (mod 11). So 29,999,999,990 · 27 ≡ 27 (mod 11). Evaluating 27, we see that 27 ≡ 7 (mod 11).

1.6 Russell’s Paradox and Cantor’s Diagonal Argument

At the start of the 20th century, there was great interest in formalizing mathematics. In particular, the famous
mathematician David Hilbert sought to show that any mathematical statement was either provably true or
provably false, and that such a system was logically consistent. The mathematician Kurt Gödel showed that
Hilbert’s goal was unatainable with his Incompleteness Theorems, which stated that every logical system is
either incomplete or inconsistent. Gödel corresponded with Church and Turing as they were developing the
foundations of theoretical computer science. So many of the ideas from mathematical logic appear in theoretical
computer science. The purpose of this section is to introduce Russell’s Paradox, a classic set theoretic paradox,
and Cantor’s Diagonal Argument, which shows that R is uncountable. The diagonalization technique employed
by Cantor comes up repeatedly in computability and complexity theory.

Definition 46 (Russell’s Paradox). Let R = {x : x is a set , x ̸∈ x}. So R is the set of sets which do not
contain themselves. Russell’s Paradox asks if R ∈ R? If R ̸∈ R, then R should contain itself R contains sets
which do not contain themselves. This is clearly a contradiction. Similarly, if R ∈ R, then R contains itself,
contradicting the fact that it only contains sets satisfying x ̸∈ x. So R ∈ R implies that R ̸∈ R. We obtain
R ∈ R if and only if R ̸∈ R.

Mathematical foundations, such as modern set theory, type theory, and category theory all have axioms to
prohibit a Russell’s Paradox scenario.

We now discuss basic countable and uncountable sets. We begin with the definition of countable.

Definition 47. A set S is said to be countable if there exists an injection f : S → N. Equivocally, S is
countable if there exists a surjection g : N → S.

Clearly, every finite set is countable. We consider some infinite countable sets.

Example 47. The set Z is countable. Consider the injection f : Z → N:

f(x) =

{
2x : x ≥ 0

3|x| : x < 0

Example 48. The set Q is countable. Consider the injection g : Q → N:

g(p/q) =


2p3q : p/q > 0

0 : p/q = 0

5|p|7|q| : p/q < 0

Remark: These functions are injections as prime factorization is unique, which we have from the Fundamental
Theorem of Arithmetic. We leave it as an exercise for the reader to verify that the functions in the previous
two examples are indeed injections.

An uncountable set will now be introduced.

Theorem 1.15. The set 2N is uncountable.

Proof. Suppose to the contrary that 2N is countable. Let h : N → 2N be a bijection. As h is a bijection, every
element of 2N is mapped. We achieve a contradiction by constructing an element not mapped by h. Define
S ∈ 2N by i ∈ S if and only if i ̸∈ h(i). If i ∈ h(i), then i ̸∈ S, so h(i) ̸= S. By similar argument, if i ̸∈ h(i),
then i ∈ S, so h(i) ̸= i. Therefore, S is not mapped by any element of N. As our choice of h was arbitrary, no
such bijection can exist. Therefore, 2N is uncountable.

24

Remark: Observe that Russell’s Paradox came up in the proof that 2N is uncountable. We can also use this
construction to show that R is uncountable. More precisely, we show that [0, 1] is uncountable. First, we write
each S ∈ 2N as an binary string ω0ω1 . . . where ωi = 1 iff i ∈ S. Recall this is a bijection. So we map each
infinite binary string to 0.ω0ω1 . . . ∈ [0, 1].

2 Automata Theory

Theoretical computer science is divided into three key areas: automata theory, computability theory, and
complexity theory. The goal is to ascertain the power and limits of computation. In order to study these
aspects, it is necessary to define precisely what constitutes a model of computation as well as what constitutes
a computational problem. This is the purpose of automata theory. The computational models are automata,
while the computational problems are formulated as formal languages. A common theme in theoretical com-
puter science is the relation between computational models and the problems they solve. The Church-Turing
thesis conjectures that no model of computation that is physically realizable is more powerful than the Tur-
ing Machine. In other words, the Church-Turing thesis conjectures that any problem that can be solved via
computational means, can be solved by a Turing Machine. To this day, the Church-Turing thesis remains an
open conjecture. For this reason, the notion of an algorithm is equated with a Turing Machine. In this section,
the simplest class of automaton will be introduced- the finite state automaton, as well as the interplay with
regular languages which are the computational problems finite state automata solve.

2.1 Regular Languages

In order to talk about regular languages, it is necessary to formally define a language.

Definition 48 (Alphabet). An alphabet Σ is a finite set of symbols.

Example 49. Common alphabets include the binary alphabet {0, 1}, the English alphabet {A,B, . . . , Z, a, b, . . . , z},
and a standard deck of playing cards.

Definition 49 (Kleene Closure). Let Σ be an alphabet. The Kleene closure of Σ, denoted Σ∗, is the set of all
finite strings whose characters all belong to Σ. Formally, Σ∗ = {ϵ} ∪

⋃
n∈Z+ Σn.

Definition 50 (Language). Let Σ be an alphabet. A language L ⊂ Σ∗.

We now delve into regular languages, starting with a definition. This definition for regular languages is rather
difficult to work with and offers little intuition or insights into computation. Kleene’s Theorem (which will
be discussed later) provides an alternative definition for regular languages which is much more intuitive and
useful for studying computation. However, the definition of a regular language provides some nice syntax for
regular expressions, which are useful in pattern matching.

Definition 51 (Regular Language). Let Σ be an alphabet. The following are precisely the regular languages
over Σ:

� The empty language ∅ is regular.

� For each a ∈ Σ, {a} is regular.

� Let L1, L2 be regular languages over Σ. Then L1 ∪ L2, L1 · L2, and L
∗
1 are all regular.

Remark: The operation · is string concatenation. Formally, L1 · L2 = {xy : x ∈ L1, y ∈ L2}.

A regular expression is a concise algebraic description of a corresponding regular language. The algebraic
formulation also provides a powerful set of tools which will be leveraged throughout the course to prove
languages are regular, derive properties of regular languages, and show certain collections of regular languages
are decidable. The syntax for regular expressions will now be introduced.

Definition 52 (Regular Expression). Let Σ be an alphabet. A regular expression is defined as follows:

� ∅ is a regular expression, and L(∅) = ∅.

25

� ϵ is a regular expression, with L(ϵ) = {ϵ}.

� For each a ∈ Σ, L(a) = {a}.

� Let R1, R2 be regular expressions. Then:

– R1 +R2 is a regular expression, with L(R1 +R2) = L(R1) ∪ L(R2).

– R1R2 is a regular expression, with L(R1R2) = L(R1) · L(R2).

– R∗
1 is a regular expression, with L(R∗

1) = (L(R1))
∗.

Like the definition of regular languages, the definition of regular expressions is bulky and difficult to use. We
provide a couple examples of regular expressions to develop some intuition.

Example 50. Let L1 be the set of strings over Σ = {0, 1} beginning with 01. We construct the regular
expression 01Σ∗ = 01(0 + 1)∗.

Example 51. Let L2 be the set of strings over Σ = {0, 1} beginning with 0 and alternating between 0 and 1.
We have two cases: a string ends with 0 or it ends with 1. Suppose the string ends with 0. Then we have the
regular expression 0(10)∗. If the string ends with 1, we have the regular expression 0(10)∗1. These two cases
are disjoint, so we add them: 0(10)∗ + 0(10)∗1.

Remark: Observe in Example 51 that we are applying the Rule of Sum. Rather than counting desired objects,
we are listing them explicitly. Regular Expressions behave quite similarly to the ring of integers, with several
important differences, which we will discuss shortly.

Example 52. Let L3 be the language over Σ = {a, b} where the number of a’s is divisible by 3. We construct
a regular expression to generate L3. We examine the cases in which there are no a’s, and in which a’s are
present.

� Case 1: Suppose no a’s are present. So any string consisting solely of finitely many b’s belongs to L3.
Thus, we have b∗ to generate these strings.

� Case 2: Suppose that a’s are present in the string. We first construct a regular expression R to match
strings that contain exactly 3 a’s. We note that between two consecutive occurrences of a, there can
appear finitely many b’s. Similarly, there can appear finitely many b’s before the first a or after the last
a. So we have that: R = b∗ab∗ab∗ab∗. Now R∗ = (b∗ab∗ab∗ab∗)∗ generates the set of strings in L3 where
the number of a’s is divisible by 3 and at least 3 a’s appear. Additionally, R∗ generates ϵ, the empty
string.

We note that R∗ in Case 2 does not capture strings consisting solely of finitely many b’s. Concatenating
b∗R∗ = b∗(b∗ab∗ab∗ab∗) resolves this issue and is our final answer.

2.2 Finite State Automata

The finite state automaton (or FSM) is the first model of computation we shall examine. We then introduce
the notion of language acceptance, culminating with Kleene’s Theorem which relates regular languages to finite
state automata.

We begin with the definition of a deterministic finite state automaton. There are also non-deterministic finite
state automata, both with and without ϵ transitions. These two models will be introduced later. They are
also equivalent to the standard deterministic finite state automaton.

Definition 53 (Finite State Automaton (Deterministic)). A Deterministic Finite State Automaton or DFA is
a five-tuple (Q,Σ, δ, q0, F) where:

� Q is the finite set of states,

� Σ is the alphabet,

� δ : Q× Σ → Q is the state transition function,

� q0 is the initial state, and

26

� F ⊂ Q is the set of accepting states.

We discuss how a DFA executes. Consider a string ω ∈ Σ∗ as the input string for the DFA. From the initial
state q0, we transfer to another state, which we call q1, in Q based on the first character in ω. That is,
q1 = δ(q0, ω1) is the next state we visit. The second character in ω is examined and another state transition is
executed based on this second character and the current state. That is, q2 = δ(q1, ω2). We repeat this for each
character in the string. The state transitions are dictated by the state transition function δ associated with
the machine. A string ω is said to be accepted by the finite state automaton if, when started on q0 with ω as
the input, the finite state automaton terminates on a state in F . The language of a finite state automaton M
is defined as follows.

Definition 54 (Language of FSM). Let M be a FSM. The language of M , denoted L(M), is the set of strings
that M accepts.

Let us consider an example of a DFA to develop some intuition.

Example 53. We design a DFA to accept the language 0∗1. Informally, we think of each state as a Boolean
flag. At the initial state q0, we simply remain at q0 upon reading in 0’s. At q0, we transition to q1 upon reading
in a 1. This transition can be viewed as toggling a Boolean flag to indicate that the first 1 has been parsed.
Now q1 is our sole accept state.

Observe that at q1, we have read a sequence of 0’s followed by a single 1. Therefore, should the DFA read
in any character at q1, we have that the input string does not belong to the language generated by 0∗1. For
this reason, we transition to a third state, which we call qreject. At qreject, the DFA simply reads in charac-
ters until it has parsed the entire string. Note that the term reject does not serve any functional purpose in
terminating the computation early. Rather, reject is simply a descriptive variable name we provide to the state.

The state transition diagram for this DFA is provided below. Here, the vertices correspond to the states of
the DFA, while the directed edges correspond to the transitions. Note that the loop from q0 to itself is labeled
with 0, as there is a transition δ(q0, 0) = q0. Similarly, the directed edge from q0 → q1 is labeled with 1, as
there is a transition δ(q0, 1) = q1. Note that we label the directed edge from q1 → qreject with both 0 and 1, as
we have the transitions δ(q1, 0) = qreject and δ(q1, 1) = qreject.

Finally, we note that accept states are indicated with the double circle border (as in the case of q1), while
non-accept states have the single-circle border (as in the cases of q0 and qreject).

q0start q1 qreject

0

1

0, 1

0, 1

For the sake of completeness, we identify each component of the DFA.

� The set of states Q = {q0, q1, qreject}, where q0 is the initial state.

� The set of accept states is F = {q1}.

� The alphabet is Σ = {0, 1}.

� The transition function δ is given by the following table.

0 1

q0 q0 q1
q1 qreject qreject

qreject qreject qreject

Remark: More generally, finite state automata can be represented pictorally using labeled directed graphs
G(V,E,L) where each state Q of the automaton is represented by a vertex of V . There is a directed edge

27

(qi, qj) ∈ E(G) if and only if there exists a transition δ(qi, a) = qj for some a ∈ Σ ∪ {ϵ}. The label function
L : E(G) → 2Σ∪{ϵ} maps (qi, qj) 7→ {a ∈ Σ ∪ {ϵ} : δ(qi, a) = qj}.

Recall from the introduction that we are moving towards the notion of an algorithm. This is actually a good
starting place. Observe that a finite state automaton has no memory beyond the current state. It also has no
capabilities to write to memory. Conditional statements and loops can all be reduced to state transitions, so
this is a good place to start.

Consider the following algorithm to recognize binary strings with an even number of bits.

f unc t i on evenPar ity (s t r i n g ω) :
pa r i t y := 0
for i := 0 to len (ω) :

pa r i t y := (party + ωi) (mod 2)
return par i t y == 0

So this algorithm accepts a binary string as input and examines each character. If it is a 1, then parity moves
from 0 → 1 if it is 0, or from 1 → 0 if its current value is 1. So if there are an even number of 1‘s in ω, then
parity will be 0. Otherwise, parity will be 1.

The following diagram models the algorithm as a finite state automaton. Here, we have Q = {q0, q1} as our
set of states with q0 as the initial state. Observe in the algorithm above that parity only changes value when
a 1 is processed. This is expressed in the finite state automata below, with the directed edges indicating that
δ(qi, ϵ) = δ(qi, 0) = qi, δ(q0, 1) = q1, and δ(q1, 1) = q0. A string is accepted if and only if it has parity = 0, so
F = {q0}.

q0 q1

0

1

1

0

From this finite state automaton and algorithm above, it is relatively easy to guess that the corresponding
regular expression is (0∗10∗1)∗. Consider 0∗10∗1. Recall that 0∗ can have zero or more 0 characters. As we are
starting on q0 and δ(q0, 0) = q0, 0

∗ will leave the finite state automaton on state q0. So then the 1 transitions
the finite state automaton to state q1. By similar analysis, the second 0∗ term keeps the finite state automaton
at state q1, with the second 1 term sending the finite state automaton back to state q0. The Kleene closure of
0∗10∗1 captures all such strings that will cause the finite state automaton to halt at the accepting state q0.

In this case, the method of judicious guessing worked nicely. For more complicated finite state automata,
there are algorithms to produce the corresponding regular expressions. We will explore one in particular, the
Brzozowski Algebraic Method, later in this course. The standard algorithm in the course text is the State
Reduction Method.

We briefly introduce NFAs and ϵ-NFAs prior to discussing Kleene’s Theorem.

Definition 55 (Non-Deterministic Finite State Automata). A Non-Deterministic Finite State Automaton or
NFA is a five-tuple (Q,Σ, δ, q0, F) where Q is the set of states, Σ is the alphabet, δ : Q × Σ → 2Q is the
transition function, q0 is the initial state, and F ⊂ Q is the set of accept states.

Remark: An ϵ-NFA is an NFA where the transition function is instead defined as δ : Q×(Σ∪{ϵ}) → 2Q is the
transition function. An NFA is said to accept a string ω if there exists a sequence of transitions terminating in
accepting state. There may be multiple accepting sequences of transitions, as well as non-accepting transitions
for NFAs. Observe as well that the other difference between the non-deterministic and deterministic finite
state automata is that the non-deterministic variant’s transition function returns a subset of Q, while the
deterministic variant’s transition function returns a single state. As a result, an NFA or ϵ-NFA accepts a
string ω precisely if there exists an accepting computation. Note that an NFA or ϵ-NFA may have multiple
non-accepting computations.

28

With these observations in hand, we may view a DFA as an NFA, simply by restricting each transition to a
single state. Similarly, an NFA is also an ϵ-NFA, where ϵ transitions are not included.

It is often easier to design efficient NFAs than DFAs. Consider an example below.

Example 54. Let L be the language given by (0 + 1)∗1. An NFA is given below. Observe that we only care
about the last character being a 1. As δ(q0, 1) = {q0, q1}, the FSM is non-deterministic.

q0 q1

0, 1

1

An equivalent DFA requires more thought in the design. We change state immediately upon reading a 1, then
additional effort is required to ensure 1 is the last character of any valid string. At q1, we transition to q0 upon
reading a 0, as that does not guarantee 1 is the last character of the string. If at q1, we remain there upon
reading in additional 1’s.

q0 q1

0

1

1

0

We introduce one final definition before Kleene’s Theorem, namely a complete computation. Intuitively, a
complete computation is the sequence of states that the given finite state automaton visits when parsing a
given input string ω. This is formalized as follows.

Definition 56 (Complete Computation). LetM be a finite state automaton, and let ω ∈ Σ∗ be of length n. A
complete computation of M on ω is a sequence of states (si)

n
i=1 where s0 = q0; and for each i ∈ {0, . . . , n− 1},

si+1 ∈ δ(si, ωi). To allow for ϵ transitions, we allow that each ωi ∈ Σ ∪ {ϵ}. The complete computation is
accepting if and only if sn ∈ F . That is, the computation is accepting if and only if M halts on an accept state
when run on ω. The computation is said to be rejecting otherwise.

We now conclude this section with Kleene’s Theorem, for which we provide a proof sketch.

Theorem 2.1 (Kleene). A language L is regular if and only if it is accepted by some DFA.

Proof Sketch. We first show that any regular language L is accepted by a DFA. The proof is by induction on
|L|. When L = 0, a DFA with no accept states accepts L. Now suppose |L| = 1. There are two cases to
consider: L = {ϵ} and L = {a} for some a ∈ Σ. Suppose first L = {ϵ}. We define a two-state DFA Mϵ where
F = {q0}, and we transition from q0 to q1 upon reading in any character from Σ; after which, we remain at q1.

Now suppose L = {a}. We define a three-state DFA as follows with F = {q1}. We have δ(q0, a) = q1 and
δ(q1, x) = q2 for any x ∈ Σ. Now for any y ∈ Σ− {a}, we have δ(q0, y) = q2.

q0

Σ

A DFA to accept L = ∅.

q0 q1

Σ

Σ

A DFA to accept L = {ϵ}.

29

q0 q1 q2

Σ− {a}

a Σ

A DFA to accept L = {a}, for some a ∈ Σ.

Now fix n ∈ N and suppose that for any regular language L with cardinality at most n, that L is accepted by
some DFA. Let L1, L2 be regular languages with cardinalities at most n. We show that L1 ∪L2, L1L2, and L

∗
1

are all accepted by some DFA.

Lemma 2.1. Let L1, L2 be regular languages accepted by DFAsM1 = (Q1,Σ, δ1, q01 , F1) andM2 = (Q2,Σ, δ2, q02 , F2)
respectively. Then L1 ∪ L2 is accepted by some DFA.

There are two proofs of Lemma 2.1. The first involves constructing an ϵ-NFA, which is quite intuitive and also
useful in a later procedure to convert regular expressions to finite state automata. We simply add a new start
state, with ϵ transitions to the initial states of M1 and M2. We leave the details of this proof as an exercise
for the reader.

The second proof proceeds by running M1 and M2 in parallel. The idea is that we track the current states of
M1 and M2. Each time a character is read, we run δ1 on the current state of M1 and run δ2 on the current
state of M2. Now the input string ω is accepted if and only if M1 or M2 (or both) accepts ω. We formalize
this with a product machine M .

Definition 57 (Product Machine). Let M1 and M2 be finite state automata. A product machine M is a finite
state automaton defined as follows.

� The state set of M is Q1 ×Q2, which allows us to track the current states of both M1 and M2 as we run
these machines in parallel.

� The transition function of M , δM = δ1 × δ2, which formalizes the notion of running δ1 on the current
state of M1 and δ2 on the current state of M2.

� The initial state of M is (q01 , q02), the ordered pair consisting of the initial states of M1 and M2.

� The alphabet of M is Σ = Σ(M1) ∪ Σ(M2). Though in practice, M1 and M2 usually have the same
alphabet.

� As with finite state automata in general, the set of final states for M is simply a subset of its state set
Q1 × Q2. There are no other constraints on the set of final states. These may (and should) be chosen
strategically when constructing M .

Remark: For the proof of Lemma 2.1, our goal is to construct a product machine M from M1 and M2 to
accept L1 ∪ L2. So M1 has to end in an accept state or M2 has to end in an accept state. Thus, the accept
states of M are (Q1 × F2) ∪ (F1 ×Q2).

Proof of Lemma 2.1. We construct a DFA to accept L1 ∪ L2. Let M be such a DFA, with Q(M) = Q1 ×Q2,
Σ(M) = Σ, δM = δ1 × δ2, q0(M) = (q01 , q02), and F (M) = (F1 × Q2) ∪ (Q1 × F2). It suffices to show that
L(M) = L1 ∪ L2.

Let ω ∈ L(M) be a string of length n. Then there is a complete accepting computation ˆδM (ω) ∈ Q(M).
Let (qan , qbn) be the final state in ˆδM (ω). If qan ∈ F1, then the projection of ˆδM into the first component is
an accepting computation of M1, so ω ∈ L1. Otherwise, qbn ∈ F2 and the projection of ˆδM into the second
component is an accepting computation of M2. So ω ∈ L2.

Let ω ∈ L1 ∪ L2. Let ˆδM1(ω) and
ˆδM2(ω) be complete computations of M1 and M2 respectively. One of these

computations must be accepting, so ˆδM1 × ˆδM2 is an accepting complete computation of M . Thus, ω ∈ L(M).
So L(M) = L1 ∪ L2.

30

Lemma 2.2. Let L1, L2 be regular languages accepted by DFAsM1 = (Q1,Σ, δ1, q01, F1) andM2 = (Q2,Σ, δ2, q02, F2)
respectively. Then L1L2 is accepted by some NFA.

Proof. We construct an ϵ-NFA M to accept L1L2 as follows. Let QM = Q1 ∪ Q2, ΣM = Σ, q0M = q01, and
FM = F2. We now construct δM = δ1 ∪ δ2 ∪ {((qi, ϵ), q02) : qi ∈ F1}. That is, we add an ϵ transition from each
state of F1 to the initial state of M2. It suffices to show that L(M) = L1L2.

Let ω ∈ L(M). Then there exists an accepting complete computation ˆδM (ω). By construction of M , ˆδM (ω)
contains some state qi ∈ F1 followed by q02. So the string ω1 . . . ωi−1 ∈ L1 and ωi+1 . . . ω|ω| ∈ L2. Conversely,

let x ∈ L1, y ∈ L2, and let ˆδM1(x) and ˆδM2(y) be accepting complete computations of M1 on x and M2 on y
respectively. Then ˆδM1

ˆδM2 is a complete accepting computation of M2, as q|x| ∈ ˆδM1 has an ϵ-transition to q02
under δM . So xy ∈ L(M). Thus, L(M) = L1L2.

Lemma 2.3. Let L be a regular language accepted by a FSM M = (Q,Σ, δ, q0, F). Then L∗ is accepted by
some FSM.

Proof. We construct an ϵ-NFAM∗ to accept L∗. We modifyM as follows to obtainM∗. Set FM∗ = FM ∪{q0},
and set δM∗ = δM ∪ {((qi, ϵ), q0) : qi ∈ FM}. It suffices to show L(M∗) = L∗. Suppose ω ∈ L(M∗). Let ˆδM∗(ω)
be an accepting complete computation. Let (ai)

k
i=1 be the indices in which q0 is visited from an accepting

state. Then for each i ∈ [k − 1], ωai . . . ωai+1−1 ∈ L. So ω ∈ L∗.

Conversely, suppose ω = ω1ω2ω3 . . . ωk ∈ L∗. For each i ∈ [k], let ˆδM (ωi) be an accepting complete computation.
As there is an ϵ transition from each state in F to q0 in M∗, the concatenation

∏k
i=1

ˆδM (ωi) is an accepting
complete computation of M∗. So ω ∈ L(M∗).

To complete the forward direction of the proof, it is necessary to show that ϵ-NFAs, NFAs, and DFAs are
equally powerful. This will be shown in a subsequent section. In order to prove the converse, it suffices to
exhibit an algorithm to convert a DFA to a regular expression, then argue the correctness of the algorithm.
To this end, we present the Brzozowski Algebraic Method in a subsequent section.

2.3 Converting from Regular Expressions to ϵ-NFA

Regular expressions are important from a theoretical standpoint, in providing a concise description of regular
languages. They are also of practical importance in pattern matching, with various programming languages
providing regular expression libraries. These libraries construct FSMs from the regular expressions to validate
input strings. One such algorithm is Thompson’s Construction Algorithm. Formally:

Definition 58 (Thompson’s Construction Algorithm).

� Instance: A regular expression R.

� Output: An ϵ-NFA N with precisely one final state such that L(N) = L(R).

The algorithm is defined recursively as follows:

� Suppose R = ∅. Then we return a singe state FSM, which does not accept any string.

� Suppose R = a, where a ∈ Σ ∪ {a}. We define a two-state machine as shown below:

q0start q1
a

� Suppose R = P +S, where P and S are regular expressions. Let MP and MS be the ϵ-NFAs accepting P
and S respectively, by applying Thompson’s Construction Algorithm to P and S respectively. We define
an ϵ-NFA to accept R as follows. We add an initial state qR and the transitions δ(qR, ϵ) = {qP , qS},
the initial states of R and S respectively. As MR and MS were obtained from Thompson’s Construction
Algorithm, they each have a single final state. We now add a new state qFR

and transitions δ(qFP
, ϵ) =

δ(qFP
, ϵ) = {qFR

}, and set FR = {qFR
}.

31

� Suppose R = PS, where P and S are regular expressions. Let MP and MS be the ϵ-NFAs accepting
P and S respectively, by applying Thompson’s Construction Algorithm to P and S respectively. We
construct an ϵ-NFA MR to accept R. We begin by setting the final state of MP is the initial state of MS .
Then FR = FS .

� Now consider R∗. Let MR be the ϵ-NFA accepting R, by applying Thompson’s Construction Algorithm
to R. We construct an ϵ-NFA to accept R∗ as follows: We add a new state initial state qR∗ and a new
final state qFR∗ . We then add the transitions δ(qR∗ , ϵ) = {qR, qFR∗} and δ(qFR

, ϵ) = {qR}.

Thompson’s Construction Algorithm follows immediately from Kleene’s Theorem. We actually could use the
constructions given in this algorithm for the closure properties of union, concatenation, and Kleene closure in
Kleene’s Theorem. This is a case where a proof gives us an algorithm. As a result, we omit a formal proof of
Thompson’s Construction Algorithm, and we proceed with an example to illustrate the concept.

Example 55. Let R = (ab + c)∗ be a regular expression. We construct an ϵ-NFA recognizing R using
Thompson’s Construction Algorithm. Observe that our base cases are the regular expressions a, b and c. So
for each x ∈ {a, b, c}, we construct the FSMs:

q0start q1
x

Now we apply the concatenation rule for ab to obtain:

q0start q1 q2
a b

Next, we apply the union rule for ab+ c to obtain:

q0start

qa q1 q2

qc qd

qf

a b

c

ϵ

ϵ ϵ

ϵ

Finally, we apply the Kleene closure step to (ab+ c)∗ to obtain our final ϵ-NFA:

32

qistart q0

qa q1 q2

qc qd

qf qfinal

a b

c

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

2.4 Algebraic Structure of Regular Languages

Understanding the algebraic structure of regular languages provides deep insights; which from a practical
perspective, allow for the design of simpler regular expressions and finite state automata. Leveraging these
machines also provides elegant and useful results in deciding certain collections of regular languages, which
will be discussed in greater depth when we hit computability theory. Intuitively, the set of regular languages
over the alphabet Σ has a very similar algebraic structure to the integers. This immediately translates into
manipulating regular expressions, applying techniques such as factoring and distribution. We begin with the
definition of a group, then continue on to other algebraic structures such as semi-groups, monoids, rings, and
semi-rings. Ultimately, the algebra presented in this section will be subservient to deepening our understanding
of regular languages. In a later section, the exposition of group theory will be broadened to include the basics
of homomorphisms and group actions.

Definition 59 (Group). A Group is a set of elements G with a closed binary operator ⋆ : G×G→ G satisfying
the following axioms:

1. Associativity: For every g, h, k ∈ G, (g ⋆ h) ⋆ k = g ⋆ (h ⋆ k)

2. Identity: There exists an element 1 ∈ G such that 1g = g1 = g for every g ∈ G.

3. Inverse: For every g, there exists a g−1 such that gg−1 = g−1g = 1.

Remark: By convention, we drop the ⋆ operator and write g ⋆ h as gh, for a group is an abstraction over the
operation of multiplication. When ⋆ is commutative, we write g ⋆ h as g + h (explicitly using the + symbol),
with the identity labeled as 0. This is a convention which carries over to ring and field theory.

Example 56. The set of integers Z forms a group over addition. However, Z with the operation of multipli-
cation fails to form a group.

Example 57. The real numbers R form a group over addition, and R−{0} forms a group over multiplication.

Example 58. The integers modulo n ≥ 1, denoted Zn or Z/nZ, forms a group over addition, and Z/nZ−{0}
forms a group over multiplication precisely when n is a prime.

We defer formal proofs that these sets form groups under the given operations, until our group theory unit.
The purpose of this section is purely intuitive. The next structure we introduce is a ring.

Definition 60 (Ring). A ring is a three-tuple (R,+, ∗), where (R,+) forms an Abelian group, and ∗ : R×R→
R is closed and associative. Additionally, multiplication distributes over addition: a(b + c) = ab + ac and
(b+ c)a = ba+ ca for all a, b, c ∈ R.

33

Remark: A ring with a commutative multiplication is known as a commutative ring, and a ring with a mul-
tiplicative identity 1 is known as a ring with unity. If R − {0} forms an Abelian group over the operation of
multiplication, then R is known as a field. Each of the above groups forms a ring over the normal operation of
multiplication. However, only R,Q,C and Z/pZ (for p prime) are fields.

We now have some basic intuition about some common algeraic structures. Mathematicians focus heavily on
groups, rings, and fields. Computer scientists tend to make greater use of monoids, semigroups, and posets
(partially ordered sets). The set of regular languages over the alphabet Σ forms a semi-ring, which is a
monoid over the addition operation (set union) and a semigroup over the multiplication operation (string
concatenation). We formally define a monoid and semigroup, then proceed to discuss some intuitive relations
between the semi-ring of regular languages and the ring of integers.

Definition 61 (Semigroup). A semigroup is a two-tuple (S,⊙) where ⊙ is a closed, binary operator ⊙ :
S × S → S.

Definition 62 (Monoid). A monoid is a two-tuple (M,⊙) that forms a semigroup, with identity.

Remark: A monoid with inverses is a group.

Definition 63 (Semi-Ring). A semi-ring is a three-tuple (R,+, ∗) is a commutative monoid over addition and a
semigroup over multiplication. Furthermore, multiplication distributes over addition. That is, a(b+c) = ab+ac
and (b+ c)a = ba+ ca for all a, b, c ∈ R.

Recall the proof of the binomial theorem. We had a product (x+y)n, and selected k of the factors to contribute
an x term. This fixed the remaining n − k terms to contribute a y, yielding the term

(
n
k

)
xkyn−k. Prior to

rearranging and grouping common terms, the expansion yields strings of length n consisting solely of characters
drawn from {x, y}. So the ith (x + y) factor contributes either x or y (but not both) to character i in the
string, just as with a regular expression. Each selection is independent; so by rule of product, we multiply.
Since Z is a commutative ring, we can rearrange and group common terms. However, string concatenation is
a non-commutative multiplication, so we cannot rearrange. However, the rule of sum and rule of product are
clearly expressed in the regular expression algebra.

Example 59. While commutativity of multiplication is one noticeable difference between the integers and
regular languages, factoring and distribution remain the same. Recall the regular expression from Example 38,
0(10)∗0 + 0(10)∗1. We can factor 0(10)∗ to achieve an equivalent regular expression 0(10)∗(ϵ+ 1).

Example 60. We construct a regular expression over Σ = {a, b, c}, where nb(ω) + nc(ω) = 3 (where nb(ω)
denotes the number of b’s in ω), using exactly one term. We note that there can be arbitrarily many a’s
between each pair of consecutive b/c’s. So we start with a∗, then select either a b or c. This is formalized by
a∗(b+ c). We then repeat this logic twice more to obtain:

a∗(b+ c)a∗(b+ c)a∗(b+ c)a∗.

Notice how much cleaner this answer is than constructing regular expressions for all 8 cases where nb(ω) +
nc(ω) = 3.

2.5 DFAs, NFAs, and ϵ-NFAs

In this section, we show that DFAs, NFAs, and ϵ-NFAs are equally powerful. We know already that DFAs are
no more powerful than NFAs, and that NFAs are no more powerful than ϵ-NFAs. The approach is to take the
machine with weakly greater power and convert it to an equivalent machine of weakly less power. Note my use
of weak ordering here. We begin with a procedure to convert NFAs to DFAs.

Recall that an NFA may have multiple complete computations for any given input string ω. Some, all, or
none of these complete computations may be accepting. In order for the NFA to accept ω, at least one such
complete computation must be accepting. The idea in converting an NFA to a DFA is to enumerate the possible
computations for a given string. The power set of QNFA becomes the set of states for the DFA. In the NFA,
a given state is selected non-deterministically in a transition. The DFA deterministically selects all possible
states.

Definition 64 (NFA to DFA Algorithm). Formally, we define the input and output.

34

� Instance: An NFA N = (QN ,Σ, δN , q0, FN). Note that N is not an ϵ-NFA.

� Output: A DFA D = (QD,Σ, δD, qD, FD} such that L(D) = L(N).

We construct D as follows:

� QD = 2QN

� For each S ∈ 2QN and character x ∈ Σ, δD(S, x) =
⋃

s∈S δN (S, x)

� qD = {q0}

� FD = {S ∈ 2QN : S ∩ FN ̸= ∅}

Consider an example:

Example 61. We seek to convert the following NFA to a DFA.

q0 q1 q2 q3

a, b

b b

a, b

a

b

The most methodical way to represent the DFA is by providing the transition table, noting the initial and
accept states. We use the → symbol to denote the start state and the ⋆ symbol to denote accept states. The
empty set is not included, because no transition leaves this state. Intuitively, the empty set is considered a
trap state.

State a b

→ {q0} {q0} {q0, q1}
{q0, q1} {q0} {q0, q1, q2}
⋆{q0, q2} {q0, q2, q3} {q0, q1, q2}
⋆{q0, q3} {q0} {q0, q1, q2}
⋆{q1, q2} {q2, q3} {q2}
⋆{q1, q3} {q0} {q0, q1, q2}
⋆{q2, q3} {q2, q3} {q2}

⋆{q0, q1, q2} {q0, q2, q3} {q0, q1, q2}
⋆{q0, q1, q3} {q0} {q0, q1, q2}
⋆{q0, q2, q3} {q0, q2, q3} {q0, q1, q2}
⋆{q1, q2, q3} {q2, q3} {q2}

⋆{q0, q1, q2, q3} {q0, q2, q3} {q0, q1, q2}

Dealing with an exponential number of states is tedious and bothersome. We can prune unreachable states
after constructing the transition table, or we can only add states as they become necessary. In Example 44,
only the states {q0}, {q0, q1}, {q0, q1, q2}, and {q0, q2, q3} are reachable from q0. So we may restrict attention to
those. A graph theory intuition regarding connected components and walks is useful here. If the graph is not
connected, no path (and therefore, walk) exists between two vertices on separate components. We represent
our FSMs pictorally as graphs, which allows us to easily apply the graph theory intuition.

We now prove the correctness of this algorithm.

Theorem 2.2. Let N = (QN ,Σ, δN , q0, FN) be an NFA. There exists a DFA D such that L(N) = L(D).

Proof. Let D be the DFA returned from the algorithm in Definition 50. It suffices to show that L(N) = L(D).
Let ω ∈ L(N). Then there is a complete accepting complete computation δ̂N (ω) = (q0, . . . , qk). Let δ̂D(ω) =
(p0, . . . , pk) be the complete computation of D on ω. We show by induction that qi ∈ pi for all i ∈ {0, . . . , k}.

35

When i = 0, p0 = {q0}, so the claim holds. Now fix h such that 0 < h < k and suppose that for each i < h,
qi ∈ pi. We prove true for the h+ 1 case. By construction:

ph+1 =
⋃
q∈ph

δN (q, ωh+1) (4)

Since qi ∈ ph and qi+1 ∈ δN (qi, ωh+1), we have qi+1 ∈ δD(qi, ωh+1). Since ω ∈ L(N), qk ∈ FN . We know that
qk ∈ pk. By construction of D, pk ∈ FD. So ω ∈ L(D), which implies L(N) ⊂ L(D).

Conversely, suppose ω ∈ L(D). Let δ̂D(ω) = (p1, . . . , pk) be an accepting complete computation of D on ω.
We construct an accepting complete computation of N on ω. As ω ∈ L(D), pk ∩ Fn ̸= ∅. Let qf ∈ pk ∩ Fn.
From (7), qf ∈ δN (q, ωk−1) for some q ∈ pk−1. Let qk−1 be such a state. Iterating on this argument yields a
sequence of states starting at q0 and ending at qf , which is a complete accepting computation of N on ω. So
ω ∈ L(N), which implies L(D) ⊂ L(N).

Example 62. In the worst case, the algorithm in Definition 50 requires an exponential number of cases. Con-
sider an n state NFA where δ(q0, 0) = {q0}, δ(q0, 1) = {q0, q1}; and for all i ∈ [n−1], δ(qi, 0) = δ(qi, 1) = {qi+1}.
The only accept state is qn.

We now discuss the procedure to convert an ϵ-NFA to an NFA without ϵ transitions. This shows that an ϵ-NFA
is no more powerful than an NFA. We know already that an NFA is no more powerful than an ϵ-NFA, so our
construction shows that an NFA and ϵ-NFA are equally powerful. The definition of the ϵ-closure will first be
introduced.

Definition 65 (ϵ-Closure). Let N be an ϵ-NFA and let q ∈ Q. The ϵ-closure of q, denoted ECLOSE(q) is
defined recursively as follows. First, q ∈ ECLOSE(q). Next, if the state s ∈ ECLOSE(q) and there exists a
state r such that r ∈ δ(s, ϵ), then r ∈ ECLOSE(q).

Remark: Intuitively, ECLOSE(q) is the set of states reachable from q using only ϵ transitions.

Definition 66 (ϵ-NFA to NFA Algorithm). We begin with the instance and output statements:

� Instance: An ϵ-NFA N = (QN ,Σ, δ, q0N , F).

� Output: An NFA without ϵ transitions M = (QM ,Σ, δ, q0M , F) such that L(M) = L(N).

We construct M as follows:

i f N has no ϵ t r a n s i t i o n s :
return N

for each q ∈ QN :
compute ECLOSE(q)
for each pa i r s ∈ ECLOSE(q) :

i f s ∈ FN :
FN := FN ∪ {q}

for each ω ∈ Σ :
i f δ(s, ω) i s de f ined :

add t r a n s i t i o n δ(q, ω) := δ(s, ω)
remove s from δ(q, ϵ)

return the modi f i ed N

Theorem 2.3. The procedure in Definition 66 correctly constructs an NFA M with no ϵ transitions such that
L(M) = L(N).

Example 63. Consider the following ϵ-NFA:

36

q0 q1

q2

q3

a, b

ϵ

ϵ

a

b

b

We begin by computing the ϵ-closure of each state. The only states with ϵ-transitions are q0 and q1, so we
restrict attention to the ϵ-closures for these states. We have ECLOSE(q1) = {q1, q2} and ECLOSE(q0) =
{q0} ∪ ECLOSE(q1) = {q0, q1, q2}. Since δ(q2, b) = q3, we add the transitions δ(q0, b) = δ(q1, b) = q3 and
remove the ϵ transition δ(q1, ϵ) = q2.

We repeat this procedure for q0. Since δ(q1, a) = δ(q1, b) = q3. So we add the transitions δ(q0, a) = δ(q0, b) = q3
and remove the transition δ(q0, ϵ) = q1. The final NFA is as follows:

q0 q1

q2

q3

a, b

a, b

a, b

b

b

2.6 DFAs to Regular Expressions- Brzozowski’s Algebraic Method

In order to complete the proof of Kleene’s Theorem, we must show that each finite state machine accepts a
regular language. To do so, it suffices to provide an algorithm that converts a FSM to a corresponding regular
expression. We exmaine the Brzozowski algebraic method. Intuitively, the Brzozowski Algebraic Method takes
a finite state automata diagram (the directed graph) and constructs a system of linear equations to solve.
Solving a subset of these equations will yield the regular expression for the finite state automata. I begin by
defining some notation. Fix a FSM M . Let Ei denote the regular expression such that L(Ei) contains strings
ω such that when we run M on ω, it halts on qi.

The system of equations consists of recursive definitions for each Ei, where the recursive definition consists of
sums of EjRji products, where Rji is a regular expression consisting of the union of single characters. That is,
Rji represents the selection of single transitiosn from state j to state i, or single edges (j, i) in the graph. So
if δ(qj , a) = δ(qj , b) = qi, then Rji = (a+ b). In other words, Ej takes the finite state automata from state q0
to qj . Then Rji is a regular expression describing strings that will take the finite state automata from state j
to state i in exactly one step. That is, intuitively:

Ei =
∑
j∈Q

EjRji.

Note: Recall that addition when dealing with regular expressions is the set union operation.

Once we have the system of equations, then we solve them by backwards substitution just as in linear algebra
and high school algebra. We formalize our system of equations:

Definition 67 (Brzozowski Algebraic Method). Let D be a DFA. Let i, j ∈ Q and define Rij ⊂ (Σ ∪ {ϵ})
where Rij = {ω : δ(i, ω) = j}. For each i ∈ Q, we define:

Ei =
∑
q∈Q

EqRqi.

37

The desired regular expression is the closed form sum:∑
f∈F

Ef .

In order to solve these equations, it is necessary to develop some machinery. More importantly, it is important
to ensure this approach is sound. The immediate question to answer is whether Eq exists for each q ∈ Q?
Intuitively, the answer is yes. Fix q ∈ Q. We take D, and construct a new DFA Dq whose state set, transitions,
and initial state are the same as D. However, the sole final state of Dq is q. This is begging the question,
though. We have shown that if a language is regular, then there exists a DFA that recognizes it.

The goal now is to show the converse: the language accepted by a finite state automaton is regular. To this
end, we introduce the notion of a derivative for regular expressions, which captures the suffix relation. The
derivative of a regular expression returns a regular expression, so it is accepted by some finite state automaton
(which we have already proven in the forward direction of Kleene’s Theorem). We view each Rij as the sum
of derivatives of each Ei. It then becomes necessary to show that a regular expression can be written as the
sum of its derivatives. This implies the existence of a solution to the equations in Definition 67. With a high
level view in mind, we proceed with the definition of a derivative.

Definition 68 (Derivative of Regular Expressions). Let R be a regular expression and let ω ∈ Σ. The
derivative of R with respect to ω is DωR = {t : ωt ∈ L(R)}.

We next introduce the following function:

Definition 69. Let R be a regular expression, and define the function τ as follows:

τ(R) =

{
ϵ : ϵ ∈ L(R)

∅ : ϵ ̸∈ L(R).
(5)

Note that ∅R = R∅ = ∅, which follows from a counting argument. We note that L(∅R) = L(∅) × L(R) =
∅ × L(R). Now by the Rule of Product, |∅ × L(R)| = |∅| × |L(R)| = 0.

It is clear the following hold for τ :

τ(ϵ) = τ(R∗) = ϵ

τ(a) = ∅ for all a ∈ Σ

τ(∅) = ∅
τ(P +Q) = τ(P) + τ(Q)

τ(PQ) = τ(P)τ(Q).

Note that ∅R = R∅ = ∅, for any regular expression L. A simple counting argument for the cardinality of the
concatenation of two languages justifies this.

Theorem 2.4. Let a ∈ Σ and let R be a regular expression. DaR is defined recursively as follows:

Daa = ϵ (6)

Dab = ∅ if b ∈ (Σ− {a}) ∪ {ϵ} ∪ {∅} (7)

Da(P
∗) = (DaP)P

∗ (8)

Da(PQ) = (DaP)Q+ τ(P)DaQ (9)

Proof Sketch. Lines 6 and 7 follow immediately from Definition 68. We next show that the equation at line 8 is
valid. Let σ ∈ L(Da(P

∗)). So we may write σ = xy, for some strings x, y. Without loss of generality, we assume
that ax ∈ L(P). So x ∈ L(DaP) and y ∈ L(P ∗). Thus, L(σ ∈ (DaP)P

∗). Conversely, let ψ ∈ L((DaP)P
∗).

So aψ ∈ L(P ∗), which implies that Da(aψ) = ψ ∈ L(DaP
∗), as desired.

The proof of line 9 is left as an exercise for the reader.

38

The next two results allow us to show that the derivative of a regular expression is itself a regular expression.
So regular languages are preserved under the derivative operator. This algebraic proof is more succinct than
modifying a FSM to accept a given language.

Theorem 2.5. Let ω ∈ Σ∗ with |ω| = n, and let R be a regular expression. DωR satisfies:

DϵR = R

Dω1ω2R = Dω2(Dω1R)

DωR = Dωn(Dω1...ωn−1R)

Proof. This follows from the definition of the derivative and induction. We leave the details as an exercise for
the reader.

Theorem 2.6. Let s ∈ Σ∗ and R be a regular expression. DsR is also a regular expression.

Proof. The proof is by induction on |s|. When |s| = 0, s = ϵ and DsR = R, which is a regular expression.
Fix k ≥ 0, and suppose that if |s| = k then DsR is a regular expression. We prove true for the k + 1 case.
Let ω be a string of length k + 1. From Theorem 2.5, DωR = Dωk+1

(Dω1...ωk
R). By the inductive hypothesis,

(Dω1...ωk
R) is a regular expression, which we call P . We apply the inductive hypothesis to Dωk+1

P to obtain
the desired result.

We introduce the next theorem, which is easily proven using a set-inclusion argument. This theorem does
not quite imply the correctness of the system of equations for the Brzozowski Algebraic Method. However, a
similar argument shows the correctness of the Brzozowski system of equations.

Theorem 2.7. Let R be a regular expression. Then:

R = τ(R) +
∑
a∈Σ

a(DaR).

In order to solve the Brzozowski system of equations, we use the substitution approach from high school.
Because the set of regular languages forms a semi-ring, we do not have inverses for set union or string concate-
nation. So elimination is not a viable approach here. Arden’s Lemma, which is given below, provides a means
to obtain closed form solutions for each equation in the system. We then substitute the closed form solution
into the remaining equations and repeat the procedure.

Lemma 2.4 (Arden). Let α, β be regular expressions and R be a regular expression satisfying R = α + βR.
Then R = α(β∗).

Remark: Arden’s Lemma is analogous to homogenous first-order recurrence relations, which are of the form
a0 = k and an = can−1 where c, k are constants. The closed form solution for the recurrence is an = kcn.

We now consider some examples of applying the Brzozowski Algebraic Method.

Example 64. We seek a regular expression over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} describing those
integers whose value is 0 modulo 3.

In order to construct the finite state automata for this language, we take advantage of the fact that a number
n ≡ 0 (mod 3) if and only if the sum of n’s digits are also divisible by 3. For example, we know 3|123 be-
cause 1+2+3 = 6, a multiple of 3. However, 125 is not divisible by 3 because 1+2+5 = 8 is not a multiple of 3.

Now for simplicity, let’s partition Σ into its equivalence classes a = {0, 3, 6, 9} (values congruent to 0 mod 3),
b = {1, 4, 7} (values equivalent to 1 mod 3), and c = {2, 5, 8} (values equivalent to 2 mod 3). Similarly, we let
state q0 represent a, state q1 represent b, and state q2 represent c. Thus, the finite state automata diagram is
given below, with q0 as the accepting halt state:

39

q0 q1

q2

a

b

c

a

b

c

a

b
c

We consider the system of equations given by Ei, taking the FSM from state q0 to qi:

� E0 = ϵ+ E0a+ E1c+ E2b

If at q0, transition to q0 if we read in the empty string, or if we go from q0 → q0 and read in a character in
a; or if we go from q0 → q2 and read in a character in c; or if we go from q0 → q2 and read in a character
from b.

� E1 = E0b+ E1a+ E2c

To transition from q0 → q1, we can go from q0 → q0 and read in a character from b; go from q0 → q1 and
read in a character from a; or go from q0 → q2 and read in a character from c.

� E2 = E0c+ E1b+ E2a

To transition from q0 → q2, we can go from q0 → q0 and read a character from c; go from q0 → q0 and
read in a character from b; or go from q0 → q2 and read in a character from a.

Since q0 is the accepting halt state, only a closed form expression of E0 is needed.

There are two steps which are employed. The first is to simplify a single equation, then to backwards substi-
tute into a different equation. We repeat this process until we have the desired closed-form solution for the
relevant Ei (in this case, just E0). In order to simplify a variable, we apply Arden’s Lemma, which states that
E = α+ Eβ = α(β)∗, where α, β are regular expressions.

We start by simplifying E2 using Arden’s Lemma: E2 = (E0c+ E1b)a
∗.

We then substitute E2 into E1, giving us E1 = E0b + E1a + (E0c + E1b)(a)
∗c = E0(b + ca∗c) + E1(c + ba∗c).

By Arden’s Lemma, we get E1 = E0(b+ ca∗c)(a+ ba∗c)∗

Substituting again, E0 = ϵ+ E0a+ E0(b+ ca∗c)(a+ ba∗c)∗c+ (E0c+ E1b)a
∗b.

Expanding out, we get E0 = ϵ+ E0a+ E0(b+ ca∗c)(a+ ba∗c)∗c+ E0ca
∗b+ E0(b+ ca∗c)(a+ ba∗c)∗a∗b.

Then factoring out: E0 = ϵ+ E0(a+ ca∗b+ (b+ ca∗c)(a+ ba∗c)∗(c+ ba∗b)).

By Arden’s Lemma, we have: E0 = (a+ca∗b+(b+ca∗c)(a+ba∗c)∗(c+ba∗b))∗, a closed form regular expression
for the integers mod 0 over Σ.

Example 65. Consider the DFA:

40

State Set a b

Q0 {q0} Q1 Q2

⋆Q1 {q0, q2} Q1 Q2

Q2 {q1} Q0 Q3

⋆Q3 {q1, q2} Q0 Q3

The Brzozowski Equations are shown below. We leave it as an exercise for the reader to solve this system of
equations.

E0 = E2a+ E3a+ ϵ

E1 = E0a+ E1a

E2 = E0b+ E1b

E3 = E2b+ E3b

2.7 Pumping Lemma for Regular Languages

So far, we have only examined languages which are regular. The Pumping Lemma for Regular Languages
provides a non-deterministic test to determine if a language is not regular. We check if a language cannot be
pumped. If this is the case, then it is not regular. However, there exist non-regular languages which satisfy the
Pumping Lemma for Regular Languages. That is, the Pumping Lemma for Regular Languages is a necessary
condition for a language to be regular. There are numerous Pumping Lemmas, including the Pumping Lemma
for Context Free Languages and others in the literature for various classes of formal languages. So the Pumping
Lemma for Regular Languages is a very natural result. We state it formally below.

Theorem 2.8 (Pumping Lemma for Regular Languages). Suppose L is a regular language. Then there exists
a constant p > 0, depending only on L, such that for every string ω ∈ L with |ω| ≥ p, we can break w into
three strings w = xyz such that:

� |y| > 0

� |xy| ≤ p

� xyiz ∈ L for all i ≥ 0

Proof. Let D be a DFA with p states accepting L, and let ω ∈ L such that |ω| ≥ p. We construct strings
x, y, z satisfying the conclusions of the Pumping Lemma. Let δ̂(ω) = (q0, . . . , q|ω|) be a complete accepting
computation. As |ω| ≥ p, some state in the sequence (q0, . . . , qp) is repeated. Let qi = qj with i < j be
repeated. Let ωi+1 . . . ωj be the substring of ω taking the string from qi to qj . Let x = ω1 . . . ωi, y = ωi+1 . . . ωj

and z = ωj+1 . . . ω|ω|. So |xy| ≤ p, |y| > 0 and xykz ∈ L for every k ≥ 0.

We consider a couple examples to apply the Pumping Lemma for Regular Languages. In order to show a
language is not regular, we pick one string and show that every decomposition of that string can be pumped
to produce a new string not in the language. One strategy with pumping lemma proofs is to pick a sufficiently
large string to minimize the number of cases to consider.

Proposition 2.1. Let L = {0n1n : n ∈ N}. L is not regular.

Proof. Suppose to the contrary that L is regular and let p be the pumping length. Let ω = 0p1p. By the
Pumping Lemma for Regular Languages, there exist strings x, y, z such that ω = xyz, |xy| ≤ p, |y| > 0 and
xyiz ∈ L for all i ∈ N. Necessarily, xy = 0k for some k ∈ [p], with y containing at least one 0. So xy0z = xz
has fewer 0’s than 1’s. Thus, xz ̸∈ L, a contradiction.

Proposition 2.2. Let L = {0n12n0n : n ∈ N}. L is not regular.

Proof. Suppose to the contrary that L is regular and let p be the pumping length. Let ω = 0p12p0p. By
the Pumping Lemma for Regular Languages, let x, y, z be strings such that ω = xyz, |xy| ≤ p and |y| > 0.
Necessarily, xy contains only 0’s and y contains at least one 0. So xy0z = xz, which contains fewer than p 0’s
followed by 12p0p, so xz ̸∈ L, a contradiction.

41

We examine one final example, which is a non-regular language that satisfies the Pumping Lemma for Regular
Languages.

Example 66. Let L be the following language:

L = {uvwxy : u, y ∈ {0, 1, 2, 3}∗; v, w, x ∈ {0, 1, 2, 3} s.t(v = w or v = x or x = w)}∪
{w : w ∈ {0, 1, 2, 3}∗ and precisely 1/7 of the characters are 3}

Let p be the pumping length, and let s ∈ L be a string with |s| ≥ p. As the alphabet has order 4, there is
a duplicate character within the first five characters. The first duplicate pair is separated by at most three
characters. We consider the following cases:

� If the first duplicate pair is separated by at most one character, we pump one of the first five characters
not separating the duplicate pair. As u ∈ {0, 1, 2, 3}∗, the resultant string is still in L.

� If the duplicate pair is separated by two or three characters, we pump two consecutive characters sepa-
rating them. If we pump down, we obtain a substring with the duplicate pair separated by either zero
or one characters. If we pump the separators ab up, then we have aba in the new string. In both cases,
the pumped strings belong to L.

However, L is not regular, which we show in the next section.

2.8 Closure Properties

The idea of closure properties is another standard idea in automata theory. So what exactly does closure
mean? Informally, it means if we take two elements in a set and do something to them, we get an element
in the set. This section focuses on operations on which regular languages are closed; however, we also have
closure in other mathematical operations. Consider the integers, which are closed over addition. This means
that if we take two integers and add them, we get an integer back.

Similarly, if we take two real numbers and multiply them, the product is also a real number. The real numbers
are not closed under the square root operation, however. Consider

√
−1 = i, which is a complex number but

not a real number. This is an important point to note- operations on which a set is closed will never give us
an element outside of the set. So adding two real numbers will never give us a complex number of the form
a+ bi where b ̸= 0.

Now let us look at operations on which regular languages are closed. Let Σ be an alphabet and let RE(Σ)
be the set of regular languages over Σ. A binary operator is closed on the set RE(Σ) if it is defined as:
⊙ : RE(Σ)×RE(Σ) → RE(Σ). In other words, each of these operations takes either one or two (depending on
the operation) regular languages and returns a regular language. Note that the list of operations including set
union, set intersection, set complementation, concatenation, and Kleene closure is by no means an extensive
or complete list of closure properties.

Recall from the definition of a regular language that if A and B are regular languages over the alphabet Σ,
then A ∪ B is also regular. More formally, we can write ∪ : RE(Σ) × RE(Σ) → RE(Σ), which says that the
set union operator takes two regular languages over a fixed alphabet Σ and returns a regular language over
Σ. Similarly, string concatenation is a closed binary operator on RE(Σ) where A · B = {a · b : a ∈ A, b ∈ B}.
The set complementation and Kleene closure operations are closed, unary operators. Set complementation is
defined as − : RE(Σ) → RE(Σ) where for a language A ∈ RE(Σ), A = Σ∗ \ A. Similarly, the Kleene closure
operator takes a regular language A and returns A∗.

Recall that the definition of a regular language provides for closure under the union, concatenation, and Kleene
closure operations. The proof techniques rely on either modifying a regular expression or FSMs for the input
languages. We have seen these techniques in the proof of Kleene’s theorem. We begin with set complementation.

Proposition 2.3. Let Σ be an alphabet. The set RE(Σ) is closed under set complementation.

Proof. Let L be a regular language, and let M be a DFA with a total transition function such that L(M) = L.
We construct M = (QM ,Σ, δM , q0, QM \ FM). So ω ∈ Σ∗ is not accepted by M if and only if ω is accepted by
M . So L = L(M), which implies that L is regular.

42

Remark: It is important that the transition function is a total function; that is, it is fully defined. A partial
transition function does not guarantee that this construction will accept L. Consider the following FSM. The
complement of this machine accepts precisely a.

q0start q1
a

However, if we fully define an equivalent machine (shown below), then the construction in the proof guarantees
the complement machine accepts Σ∗ \ {a}:

q0start

qr

q1
a

Σ− {a}

Σ

Σ

We now discuss the closure property of set intersection, for which two proofs are provided. The first proof
leverages a product machine (similar to the construction of a product machine for the set union operation
in the proof for Kleene’s Theorem). The second proof uses existing closure properties, and so is much more
succinct.

Proposition 2.4. Let Σ be an alphabet. The set RE(Σ) is closed under set intersection.

Proof (Product Machine). Let L1, L2 be regular languages, and let M1 and M2 be fully defined DFAs that
accept L1 and L2 respectively. We construct the product machineM = (Q1×Q2,Σ, δ1×δ2, (q01, q02), F1×F2).
A simple set containment argument shows that L(M) = L1 ∩ L2. We leave the details as an exercise for the
reader.

Proof (Closure Properties). Let L1, L2 be regular languages. By DeMorgan’s Law, we have L1∩L2 = L1 ∪ L2.
As regular languages are closed under union and complementation, we have that L1 ∩ L2 is regular.

We next introduce the set difference closure property for two regular languages. Like the proof for the closure
under set intersection, the proof of closure under set complementation relies on existing closure properties.

Proposition 2.5. Let L1, L2 be regular languages. L1 \ L2 is also regular.

Proof. Recall that L1 \ L2 = L1 ∩ L2. As the set of regular languages is closed under intersection and
complementation, L1 \ L2 is regular.

We conclude with one final closure property before examining some examples of how to apply them.

Proposition 2.6. Let L be a regular language, and let LR = {ωR : ω ∈ L}. We have LR is regular.

Proof. Let M be a DFA accepting L. We construct an ϵ-NFA M ′ to accept LR as follows. The states of M ′

are QM ∪ {q′0}, where q′0 is the initial state of M ′. We set F ′ = {q0}, the initial state of M . Finally, for
each transition ((qi, s), qj) ∈ δM , we add ((qj , s), qi) ∈ δM ′ . Finally, we add ϵ transitions from q′0 to each state
qf ∈ FM . A simple set containment argument shows that L(M ′) = LR, and we leave the details as an exercise
for the reader.

One application of closure properties is to show languages are or are not regular. To show a language fails to
be regular, we operate on it with a regular language to obtain a known non-regular language. Consider the
following example.

43

Example 67. Let L = {wwR : w ∈ {0, 1}∗}. Suppose to the contrary that L is regular. We Consider
L ∩ 0∗1∗0∗ = {0n12n0n : n ∈ N}. We know that {0n12n0n : n ∈ N} is not regular from Proposition 2.2 (recall
from earlier this morning). As regular languages are closed under intersection, it follows that at least one of
0∗1∗0∗ or L is not regular. Since 0∗1∗0∗ is a regular expression, it follows that L is not regular.

The next example contains another non-regular language.

Example 68. Let L = {w : w contains an equal number of 0’s and 1’s }. Consider L∩0∗1∗ = {0n1n : n ∈ N}.
We know that {0n1n : n ∈ N} is not regular from Proposition 2.1. Since 0∗1∗, it follows that L is not regular.

We consider a third example.

Example 69. Let L be the language from Example 49 which satisfies the Pumping Lemma for Regular
Languages.

L = {uvwxy : u, y ∈ {0, 1, 2, 3}∗; v, w, x ∈ {0, 1, 2, 3} s.t(v = w or v = x or x = w)}∪ (10)

{w : w ∈ {0, 1, 2, 3}∗ and precisely 1/7 of the characters are 3} (11)

Consider:

L ∩ (01(2 + 3))∗ = {w : w ∈ {0, 1, 2, 3}∗ and precisely 1/7 of the characters are 3} (12)

It is quite easy to apply the Pumping Lemma for Regular Languages to the language in (22), which implies
that L is not regular.

We now use closure properties to show a language is regular.

Example 70. Let L be a regular language, and let L be its complement. Then M = L · L is regular. As
regular languages are closed under complementation, L is also regular. It follows that since regular languages
are also closed under concatenation, that M is regular.

2.9 Myhill-Nerode and DFA Minimization

The Myhill-Nerode theorem is one of the most elegant and powerful results with respect to regular languages.
It provides a characterization of regular languages, in addition to regular expressions and Kleene’s theorem.
Myhill-Nerode allows us to quickly test if a language is regular, and this test is deterministic. So we have a far
more useful tool than the Pumping Lemma. Additionally, Myhill-Nerode implies an algorithm to minimize a
DFA. The resultant DFA is not only minimal, in the sense that we cannot remove any states from it without af-
fecting functionality; but it is also minimum as no DFA with fewer states that accepts the same language exists.

The intuition behind Myhill-Nerode is in the notion of distinguishing strings, with respect to a language as
well as a finite state machine. We begin with the following definition.

Definition 70 (Distinguishable Strings). Let L be a language over Σ. We say that two strings x, y are
distinguishable w.r.t L if there exists a string z such that xz ∈ L and yz ̸∈ L (or vice-versa).

Example 71. Let L = {0n1n : n ∈ N}. The strings 0, 00 are distinguishable with respect to L. Take z = 1.
However, 0110 and 10 are not distinguishable, because xz ̸∈ L and yz ̸∈ L for every non-empty string z.

Example 72. Let L = (0 + 1)∗1(0 + 1). The strings 00 and 01 are distinguishable with respect to L, taking
z = 0.

We obtain a straight-forward result immediately from the definition of Distinguishable Strings.

Lemma 2.5. Let L be a regular language, and let M be a DFA such that L(M) = L. Let x, y be distinguishable
strings with respect to L. Then M(x) and M(y) end on different states.

Proof. Suppose to the contrary that M(x) and M(y) terminate on the same state q. Let z be a string such
that (WLOG) xz ∈ L but yz ̸∈ L. As D is deterministic, M(xz) and M(yz) transition from q0 to q and then
from q to some state q′ on input z. So xz, yz are both in L, or xz, yz are both not in L. This contradicts the
assumption that x, y are distinguishable.

44

Remark: The above proof fails when using NFAs rather than DFAs, as an NFA may have multiple computa-
tions for a given input string.

We now introduce the notion of a distinguishable set of strings.

Definition 71 (Distinguishable Set of Strings). A set of strings {x1, . . . , xk} is distinguishable if every two
distring strings xi, xj in the set are distinguishable.

This yields a lower bound on the number of states required to accept a regular language.

Lemma 2.6. Suppose L is a language with a set of k distinguishable strings. Then every DFA accepting L
must have at least k states.

Proof. If L is not regular, no DFA exists and we are done. Let xi, xj be distinguishable strings. By Lemma
2.5, a DFA M run on xi halts on a state qi, while M(xj) halts on a different state qj . So there are at least k
states.

We use Lemma 2.6 to show a language is in fact non-regular, by showing that for infinitely many k ∈ N, there
exists a set of k-distinguishable strings. Consider the following example.

Example 73. Recall that L = {0n1n : n ∈ N} is not regular. Let ∈ N, and consider Sk = {0i : i ∈ [k]}. Each
of these strings is distinguishable. For i ∈ [k], z = 1i distinguishes 0i from the other strings in Sk. So for
every k ∈ N, we need a minimum of k states for a DFA to accept L. Thus, no DFA exists to accept L, and we
conclude that L is not regular.

Definition 72. Let L be a language. Define ≡L⊂ Σ∗×Σ∗. Two strings x, y are said to be indistinguishable
w.r.t. L, which we denote x ≡L y, if for every z ∈ Σ∗, xz ∈ L if and only if yz ∈ L.

Remark: ≡L is an equivalence relation. Note as well that Σ∗/ ≡L denotes the set of equivalence classes of
≡L. We now prove the Myhill-Nerode theorem.

Theorem 2.9 (Myhill-Nerode). Let L be a language over Σ. If Σ∗ has infinitely many equivalence classes
with respect to ≡L, then L is not regular. Otherwise, L is regular and is accepted by a DFA M where |QM | =
|Σ∗/ ≡L |.

Proof. If Σ∗ has an infinite number of equivalence classes with respect to ≡L, then we pick a string from each
equivalence class. This set of strings is distinguishable. So by Lemma 2.6, no DFA exists to accept L. This
shows that if L is regular, then Σ∗/ ≡L is finite.

Conversely, suppose |Σ∗/ ≡L | is finite. We construct a DFA M where Q is the set of equivalence classes of
≡L, Σ is the alphabet, q0 = [ϵ], and [ω] ∈ F iff ω ∈ L. We define the transition function δ([x], a) = [xa] for any
a ∈ Σ. It suffices to show that δ is well-defined (that is, it is uniquely determined for any representative of an
equivalence class). For any two strings x ≡L y, [x] = [y] as ≡L is an equivalence relation. We now show that
[xa] = [ya]. Since x ≡L y, x, y are indistinguishable. So xaz ∈ L iff yaz ∈ L for every string z. So [xa] = [ya].
So the DFA is well-defined.

Finally, we show that L(M) = L. Let x = x1 . . . xn be an input string. We run M on x. The resulting
computation is ([ϵ], [x1], . . . , [x1 . . . xn]). By construction of M , x ∈ L if and only if [x1 . . . xn] ∈ F . So the
DFA works as desired and L is regular.

The Myhill-Nerode Theorem provides us with a quotient machine to accept L, though not a procedure to
compute this machine explicitly. We show this DFA is minimum and unique, then discuss a minimization
algorithm. We begin by defining a second equivalence relation.

Definition 73 (Distinguishable States). Let M be a DFA. Define ≡M to be a relation on Σ∗ × Σ∗ such that
x ≡M y if and only if M(x) and M(y) halt on the same state of M .

Remark: Observe that ≡M is a second equivalence relation.

Theorem 2.10. The machine M constructed by the Myhill-Nerode Theorem is minimum and unique up to
relabeling.

45

Proof. We begin by showing that M is minimal. Let D be another DFA accepting L(M). Let q ∈ Q(D). Let:

Sq = {ω : D(w) halts on q} (13)

The strings in Sq are pairwise indistinguishable under ≡L. So Sq ⊂ [x] for some [x] ∈ Q(M). Thus,
|Q(D)| ≥ |Q(M)|.

We now show uniqueness. Suppose D has the same number of states as M but for some strings x, y, we have
x ≡D y but x ̸≡M y. Suppose M halts on state q when run on either x or y. Recall that ≡M is the same
relation as ≡L. So [x]M , [y]M are distinct equivalence classes under ≡M . However, we have already shown that
Sq ⊂ [x]M , a contradiction. So M is the unique minimum DFA accepting L.

Computing ≡L outright is challenging given the fact that Σ∗ is infinite. We instead deal with ≡M for a DFA
M , which partitions Σ∗ as well. Consider two states qi, qj of a M . Recall that Sqi and Sqj contain the set
of strings such that M halts on qi and qj respectively when simulated on an input from the respective set.
If the strings in Sqi and Sqj are indistinguishable, then Sqi and Sqj are subsets of the same equivalence class
under ≡L. Thus, we can consolidate Sqi and Sqj into a single state. We again run into the same problem of
determining which states of M are equivalent under ≡L. Instead, we deduce which states are not equivalent.
This is done with a table-marking algorithm. We consider a |Q|× |Q| table, restricting attention to the bottom
triangular half. The rows and columns correspond to states; and each cell is marked if and only if the two
states are not equivalent. In each cell corresponding to a state in F and a state in Q \ F , we mark that cell.
We then iterate until we mark no more states.

Example 74. We seek to minimize the following DFA:

We begin by noting that ϵ distinguishes the accept states and the non-accept states. So we mark the corre-
sponding cells accordingly:

46

A

B

C

X X X D

X E

X X X X F

X X X X G

We now deduce as many distinguishable states as possible:

� B and E are distinguishable states, as δ(B, 1) = E and δ(E, 1) = G. As E and G are distinguishable
states, it follows that B and E are distinguished by 1.

� F and G are distinguished by 1.

� D and G are distinguished by 1.

� A and B are distinguished by 0.

� A and C are distinguished by 0.

� A and E are distinguished by 0.

� B and C are distinguished by 1.

� As δ(C, x) = δ(E, x) for x ∈ {0, 1}, C and E are indistinguishable.

� As δ(D,x) = δ(F, x) for x ∈ {0, 1}, D and F are indistinguishable.

A

X B

X X C

X X X D

X X X E

X X X X F

X X X X X X G

The minimal DFA:

47

3 More Group Theory (Optional)

In mathematics, we have various number systems with intricate structures. The goal of Abstract Algebra is to
examine the common properties and generalize them into abstract mathematical structures, such as groups,
rings, fields, modules, and categories. We restrict attention to groups, which are algebraic structures with
an abstract operation of multiplication. Group theory has deep applications to algebraic combinatorics and
complexity theory, with the study of group actions. Informally, a group action is a dynamical process on some
set, which partitions the set into equivalence classes known as orbits. We study the structures of these orbits,
which provide deep combinatorial insights such as symmetries of mathematical objects like graphs. This section
is intended to supplement a year long theory of computation sequence in which elementary group theory is
necessary, as well as provide a stand alone introduction to algebra for the eager mathematics or theoretical
computer science student.

3.1 Introductory Group Theory

3.1.1 Introduction to Groups

In this section, we define a group and introduce some basic results. Recall that a group is an algebraic structure
that abstracts over the operation of multiplication. Formally, we define a group as follows.

Definition 74. A group is an ordered pair (G, ⋆) where ⋆ : G×G→ G satisfies the following axioms:

� Associativity: For every a, b, c ∈ G, (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

� Identity: There exists an element 1 ∈ G such that 1 ⋆ a = a ⋆ 1 = a for every a ∈ G.

� Inverses: For every a ∈ G, there exists an a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = 1.

Definition 75 (Abelian Group). A group (G, ⋆) is said to be Abelian if ⋆ commutes; that is, if a ⋆ b = b ⋆ a
for all a, b ∈ G.

We have several examples of groups, which should be familiar. All of these groups are Abelian. However, we
will introduce several important non-Abelian groups in the subsequent sections, including the Dihedral group,
the Symmetry group, and the Quaternion group. In general, assuming a group is Abelian is both dangerous
and erroneous.

Example 75. The following sets form groups using the operation of addition: Z,R,Q, and C.

Example 76. The following sets form groups using the operation of multiplication: R − {0},Q − {0}, and
C−{0}. Note that Z−{0} fails to form a group under multiplication, as it fails to satisfy the inverses axiom.
In particular, note that there does not exist an integer x such that 2x = 1.

Example 77. Vector spaces form groups under the operation of addition.

Let’s examine the group axioms more closely. Individually, each of these axioms seem very reasonable. Let’s
consider associativity at a minimum. Such a structure is known as a semi-group.

Definition 76 (Semi-Group). A semi-group is a two-tuple (G, ⋆) where ⋆ : G×G→ G is associative.

Example 78. Let Σ be a finite set, which we call an alphabet. Denote Σ∗ as the set of all finite strings
formed from letters in Σ, including the empty string ϵ. Σ∗ with the operation operation of string concatenation
⊙ : Σ∗ × Σ∗ → Σ∗ forms a semi-group.

Example 79. Z+ forms a semi-group under addition. Recall that 0 ̸∈ Z+.

Associativity seems like a weak assumption, but it is quite important. Non-associative algebras are quite
painful with which to work. Consider R3 with the cross-product operation. We show that this algebra does
not contain an identity.

Proposition 3.1. The algebra formed from R3 with the cross-product operation does not have an identity.

48

Proof. Suppose to the contrary that there exists an identity (x, y, z) ∈ R3 for the cross-product operation.
Let (1, 1, 1) and (x, y, z) such that (1, 1, 1)× (x, y, z) = (1, 1, 1). Under the operation of the cross-product, we
obtain:

z − y = 1

z − x = 1

x− y = 1

So we obtain z = y + 1 and z = x+ 1. However, x = y + 1 as well, so x = z, a contradiction.

In Example 76, we have already seen an algebra without inverses as well; namely, Z−{0} under the operation
of multiplication. Imposing the identity axiom on top of the semi-group axioms gives us an algebraic structure
known as a monoid.

Definition 77 (Monoid). A monoid is an ordered pair (G, ⋆) that forms a semi-group, and also satisfies the
identity axiom of a group.

Example 80. Let S be a set, and let 2S be the power set of S. The set union operation ∪ : 2S → 2S forms a
monoid.

Example 81. N forms a monoid under the operation of addition. Recall that 0 ∈ N.

Remark: Moving forward, we drop the ⋆ operator and simply write ab to denote a ⋆ b. When the group is
Abelian, we explicitly write a+ b to denote the group operation. This convention is from ring theory, in which
we are dealing with two operations: addition (which forms an Abelian group) and multiplication (which forms
a semi-group).

With some examples in mind, we develop some basic results about groups.

Proposition 3.2. Let G be a group. Then:

(A) The identity is unique.

(B) For each a ∈ G, a−1 is uniquely determined.

(C) (a−1)−1 = a for all a ∈ G.

(D) (ab)−1 = b−1a−1

(E) For any a1, . . . , an ∈ G,
∏n

i=1 ai is independent of how the expression is parenthesized. (This is known
as the generalized associative law).

Proof.

(A) Let f, g ∈ G be identities. Then fg = f since f is an identity, and fg = g since g is an identity. So f = g
and the identity of G is unique.

(B) Fix a ∈ G and let x, y ∈ G such that ax = ya = 1. Then y = y1 = y(ax). By associativity of the group
operation, we have y(ax) = (ya)x = 1x = x. So y = x = a−1, so a−1 is unique.

(C) Exchanging the role of a and a−1, we have from the proof of (B) and the definition of an inverse that
a = (a−1)−1.

(D) We consider abb−1a−1 = a(bb−1)a−1 by associativity. By the group operation, bb−1 = 1, so a(bb−1)a−1 =
a(1)a−1 = aa−1 = 1.

(E) The proof is by induction on n. When n ≤ 3, the associativity axiom of the group yields the desired
result. Now let k ≥ 3; and suppose that for any a1, . . . , ak ∈ G,

∏k
i=1 ai is uniquely determined, regardless

of the parenthesization. Let ak+1 ∈ G and consider
∏k+1

i=1 ai. Any parenthesization of this product breaks

it into two sub-products
∏j

i=1 ai and
∏k+1

i=j+1 ai, each of which may be further parenthesized. As there
are two non-empty products, each product has at most k terms. So by the inductive hypothesis, each
subproduct is uniquely determined regardless of parenthesization. Let x =

∏j
i=1 ai and y =

∏k+1
i=j+1 ai.

We apply the inductive hypothesis again to xy to obtain the desired result.

49

We conclude this section with the definition of the order of a group and the definition of a subgroup.

Definition 78 (Order). Let G be a group. We refer to |G| as the order of the group. For any g ∈ G, we refer
to |g| = min{n ∈ Z+ : gn = 1} as the order of the element g. By convention, |g| = ∞ if no n ∈ Z+ satisfies
gn = 1.

Example 82. Let G = Z6 over addition. We have |Z6| = 6. The remainder class 3 has order 2 in G.

Example 83. Let G = R over addition. We have |G| = ∞ and |g| = ∞ for all g ̸= 0. The order |0| = 1.

Definition 79 (Subgroup). Let G be a group. We say that H is a subgroup of G if H ⊂ G and H itself is a
group. We denote the subgroup relation H ≤ G.

Example 84. Let G = Z6 and H = {0, 3}. So H is a subgroup of G, denoted H ≤ G.

3.1.2 Dihedral Group

The Dihedral group is a non-Abelian group of key importance. In some ways, the Dihedral group is more
tangible than the Symmetry group, and we shall see the reason for this shortly. Standard algebra texts
introduce the Dihedral group as the group of symmetries for the regular polygon on n vertices, where n ≥ 3.
The Dihedral group provides an algebraic construction to study the rotations and reflections of the regular
polygon on n vertices. This provides a very poor intuition for what constitutes a symmetry, or why rotations
and reflections qualify here. Formally, a symmetry is a function from an object to itself that preservs one or
more key underlying relations. More precisely, symmetries are automorphisms of a given structure. We begin
with the definition of an isomorphism.

Definition 80 (Graph Isomorphism). Let G,H be graphs. G and H are said to be isomorphic, denoted
G ∼= H, if there exists a bijection ϕ : V (G) → V (H) such that ij ∈ E(G) =⇒ ϕ(i)ϕ(j) ∈ E(H). The function
ϕ is referred to as an isomorphism. The condition ij ∈ E(G) =⇒ ϕ(i)ϕ(j) ∈ E(H) is referred to as the
homomorphism condition. If G = H, then ϕ is a graph automorphism.

Remark: The Graph Isomorphism relation denotes that two graphs are, intuitively speaking, the same up to
relabeling; this relation is an equivalence relation.

Example 85. We note that the graphs C4 and Q2 are isomorphic, denoted. C4
∼= Q2. Both C4 and Q2 are

pictured below.

1 2

34

(a) Graph C4

00 01

10 11

(b) Graph Q2

Example 86. The graphs C4 and K1,3 are not isomorphic, denoted C4 ̸∼= K1,3. The graph C4 is shown above
in Example 85. We provide a drawing of K1,3 below.

0

1

2 3

(a) Graph K1,3

50

Remark: It is also important to note that graph homomorphisms, which are maps which for graphs G and
H are maps ϕ : V (G) → V (H) such that ij ∈ E(G) =⇒ ϕ(i)ϕ(j) ∈ E(H), are of importance as well. One
well-known class of graph homomorphisms are known as colorings, which are labelings of the vertices such
that no two adjacent vertices use the same color. Suppose in particular we color a graph G using ℓ colors.
We may view these ℓ colors as the vertices of Kℓ. So an ℓ-coloring of G is simply a graph homomorphism
φ : V (G) → V (Kℓ).

The chromatic number of a graph G, dentoed χ(G), is the minimum number of colors t such that there exists a
graph homomorphism φ : V (G) → V (Kt). Determining the chromatic number of a graph is an NP-Hard prob-
lem. We will discuss graph homomorphisms in greater detail at a later point, as well as group isomorphisms
and group homomorphisms. For now, we proceed to discuss the Dihedral group.

Recall that the Dihedral group is the group of rotations and reflections of the regular polygon on n vertices
(where n ≥ 3). This geometric object is actually the cycle graph Cn, and the rotations and reflections are
actually automorphisms. We start by intuiting the structure of the automorphisms for cycle graphs. As an
automorphism preserves a vertex’s neighbors, it is necessary that a vertex vi can only map to a vertex with
degree at least deg(vi). As the cycle graph is 2-regular (all vertices have degree 2), there are no restrictions in
terms of mapping a vertex vi of higher degree to a vertex vj of lower degree (as this would result in one of vi‘s
adjacencies not being preserved). We next look more closely at rotations and reflections.

� Rotations. A rotation of the cycle graph Cn is a function r : V (Cn) → V (Cn) such that for a vertex
vi ∈ V (Cn), r(vi) = vi+1, where the indices are taken modulo n. That is, a single rotation of Cn sends
v1 7→ v2, v2 7→ v3, . . . , vn 7→ v1. Notice that the rotation map r is a bijection. Furthermore, observe that
the rotation map preserves the neighbors of a given vertex.

Now consider the composition r ◦ r, which we denote r2. Here, r2(v1) = v3, r
2(v2) = v4, . . . , r

2(vn) = v2.
In other words, r2 simply applies the rotation operator twice. More generally, for any i ∈ {0, 1, . . . , n−1},
ri(v1) = vi, r

i(v2) = vi, and so on. Here, we view r0 as the identity map, which we denote 1 (that is,
the identity map will be the identity of the Dihedral group). In particular, we observe that it requires
exactly n rotations of the n cycle in order to send vi 7→ vi for all i ∈ [n]. So there are n distinct rotations
of the n-cycle: {1, r, r2, r3, . . . , rn−1}. We can denote this set more concisely by specify the generator and
its order, as follows:

⟨r : rn = 1⟩.

Here, r is the generator, and rn = 1 indicates that |r| = 1. The generator r can be multiplied by itself
(i.e., composed with itself) arbitrarily (but only finitely) many times. We reduce these products using
the relation rn = 1 and keep only the distinct elements. So for example, r3n+2 = r2 and r5n−1 = rn−1.
As a result, we have that:

⟨r : rn = 1⟩ = {1, r, r2, r3, . . . , rn−1}.

In particular, ⟨r : rn = 1⟩ is a subgroup of Aut(Cn). We also note that r−1 = rn−1. We may think of r−1

as undoing a rotation to the right. This moves vertex vi back from position vi+1 to its original position.
We may also acheive this same result simply by rotating the vertices to the right an additional n − 1
units. So rn−1 acheives the same result as r−1.

� Reflections: In Cn, v1 has neighbors v2, vn. So in the automorphism, ϕ(vn)ϕ(v1), ϕ(v1)ϕ(v2) ∈ E(Cn).
This leaves two options. Either preserve the sequence: ϕ(vn)− ϕ(v1)− ϕ(v2) or swap the vertices vn, v2
under automorphism to get the sequence ϕ(v2) − ϕ(v1) − ϕ(vn). This gives rise to the reflection. As an
automorphism is an isomorphism, it must preserve adjacencies. So the sequence ϕ(v2) − ϕ(v3) − ... −
ϕ(vn−1)−ϕ(vn) must exist after mapping v1. After fixing v1, v2 and vn, there is only one option for each
of ϕ(v3) and ϕ(vn−1). This in terms fixes ϕ(v4) and ϕ(vn−2), etc. In short, fixing a single vertex then
choosing whether or not to reflect its adjacencies fixes the entire cycle under automorphism.

Conceptually, consider taking n pieces of rope and tying them together. The knots are analogous to the
graph vertices. If each person holds a knot, shifting the people down by n positions is still an isomorphism.
A single person can then grab the two incident pieces of rope to his or her knot, and flip those pieces
around (the reflection operation). The same cycle structure on the rope remains. This is in fact, the

51

fundamental idea of reflection. Furthermore, we observe that a second reflection undoes the first one. So
the reflection operator, which we denote s, has order 2. So the group of reflections is

{1, s} = ⟨s : s2 = 1⟩.

We now introduce the Dihedral group. Certainly, the Dihedral group is generated by r and s, with the
relations established above, that rn = s2 = 1. We need a third relation to describe how r and s interact;
namely, rs = sr−1. Recall that rs is really the composition r ◦ s. In other words, in rs, we reflect first and
then rotate the vertices of Cn in the forward direction. Similarly, sr−1 first rotates the vertices of Cn in the
backwards direction prior to performing the reflection. We provide an example of rs and sr−1 acting on C5 to
illustrate the concept.

Example 87. Consider the graph C5.

1

2

3

5

4

(a) Graph C5

We next apply rs to C5.

1

5

4

2

3

(b) C5 after applying s.

2

1

5

3

4

(c) C5 after applying rs

We next apply sr−1 to the original C5 in Figure (a).

2

3

4

1

5

(d) C5 after applying r−1.

2

1

5

3

4

(e) C5 after applying sr−1

52

Definition 81 (Dihedral Group). Let n ≥ 3. The Dihedral group of order 2n, denoted D2n, is given by the
following presentation:

D2n = ⟨r, s : rn = s2 = 1, rs = sr−1⟩.

Remark: Formally, D2n
∼= Aut(Cn), where Aut(Cn) is the automorphism group of the cycle graph Cn. Pre-

cisely, we have only shown that D2n is contained in Aut(Cn). That is, we have shown that the rotation group
⟨r : rn = 1⟩ and the reflection group ⟨s : s2 = 1⟩ are all automorphisms of Cn. As r, s ∈ Aut(Cn), it follows
that the group generated by r and s, namely D2n, is contained in Aut(Cn). To show that D2n

∼= Aut(Cn), we
need a tool known as the Orbit-Stabilizer Theorem, which will be discussed later.

The presentation of the Dihedral group captures the notions of rotation and reflection which have been dis-
cussed so far. The final relation in the presentation of D2n, rs = sr−1, provides sufficient information to
compute the inverse of each element. The presentation states that (rs)2 = 1, which implies that rs = (rs)−1.
Let’s solve for the exact form of (rs)−1. By the presentation of D2n, s

2 = 1, which implies that |s| ≤ 2. As
s ̸= 1, |s| = 2. So rs·s = r. As rn = 1, it follows that rn−1 = r−1. Intuitively, r states to rotate the cycle by one
element clockwise. So r−1 undoes this operation. Rotating one unit counter-clockwise will leave the cycle in
the same state as rotating it n−1 units clockwise. So r−1 = rn−1. It follows that rs = (rs)−1 = sr−1 = srn−1.
And so (ris)−1 = sr−i = srn−i.

We conclude with a final remark about what is to come. The Dihedral group provides our first example of
a group action. Intuitively, a group action is a dynamical process in which a group’s elements are used to
permute the elements of some set. We study the permutation structures which arise from the action, which
provide deep combinatorial insights. Here, the Dihedral group acts on the cycle graph Cn by rotating and
reflecting its vertices. This is a very tangible example of the dynamical process of a group action. We will
formally introduce group actions later.

3.1.3 Symmetry Group

The Symmetry group is perhaps one of the most important groups, from the perspective of algebraic combi-
natorics. The Symmetry group captures all possible permutations on a given set. Certain subgroups of the
Symmetry group provide extensive combinatorial information about the symmetries of other mathematical
objects. We begin by formalizing the notion of a permutation.

Definition 82 (Permutation). Let X be a set. A permutation is a bijection π : X → X.

Formally, we define the Symmetry group as follows:

Definition 83 (Symmetry Group). Let X be a set. The Symmetry group Sym(X) is the set of all permutations
π : X → X with the operation of function composition.

Remark: Recall that the composition of two bijections is itself a bijection. This provides for closure of the
group operation. The identity map is a bijection, and so a permutation. This is the identity of the Symmetry
group. In order to see that the Symmetry group is closed under inverses, it is helpful to think of a permutation
as a series of swaps or transpositions. We simply undo each transposition to obtain the identity. Showing that
every permutation can be written as the product of (not necessarily disjoint) two-cycles is an exercise left to
the reader.

We first show how to write permutations in cycle notation. Formally, we have the following definition.

Definition 84 (Cycle). A cycle is a sequence of distinct elements which are cyclically permuted.

Definition 85 (Cycle Decomposition). The cycle decomposition of a permutation π is a sequence of cycles
where no two cycles contain the same elements. We refer to the cycle decomposition as a product of disjoint
cycles, where each cycle is viewed as a permutation.

Theorem 3.1. Every permutation π of a finite set X can be written as the product of disjoint cycles.

53

The proof is constructive. We provide an algorithm to accomplish this. Intuitively, a cyclic permutation is
simply a rotation. So we take an element x ∈ X and see where x maps under π. We then repeat this for
π(x). The cycle is closed when πn(x) = x. Formally, we take (x, π(x), π2(x), . . . , πn(x)). We then remove the
elements covered by this cycle and repeat for some remaining element in X. As X is finite and each iteration
partitions at least one element into a cycle, the algorithm eventually terminates. The correctness follows from
the fact that this construction provides a bijection between permutations and cycle decompositions. We leave
the details of this to the reader, but it should be intuitively apparent. Let’s consider a couple examples.

Example 88. Let σ be the permutation:

1 7→ 3 2 7→ 4 3 7→ 5 4 7→ 2 5 7→ 1

Select 1. Under σ, we have 1 7→ σ(1) = 3. Then 3 7→ σ(3) = 5. Finally, 5 7→ σ(5) = 1. So we have one
cycle (1, 3, 5). By similar analysis, we have 2 7→ 4 and 4 7→ 2, so the other cycle is (2, 4). Thus, σ = (1, 3, 5)(2, 4).

Example 89. Let τ be the permutation:

1 7→ 5 2 7→ 3 3 7→ 2 4 7→ 4 5 7→ 1 (14)

Select 1. We have 1 7→ 5, and then 5 7→ 1. So we have the cycle (1, 5). Similarly, we have the cycle (2, 3).
Since 4 7→ 4, we have (4). By convention, we do not include cycles of length 1 which are fixed points. So
τ = (1, 5)(2, 3).

In order to deal with the cycle representation in any meaningful way, we need a way to evaluate the composition
of two permutations, which we call the Cycle Decomposition Procedure. We provide a second algorithm
to take the product of two cycle decompositions and produce the product of disjoint cycles. Consider two
permutations σ, τ and evaluate their product στ , which is parsed from right to left as the operation is function
composition. We view each cycle as a permutation and apply a similar procedure as above. We select an
element x not covered in the final answer and follow it from right-to-left according to each cycle. When we
reach the left most cycle, the element we end at is x’s image under the product permutation. We then take x’s
image and repeat the procedure until we complete the cycle; that is, until we end back at x. We iterate again
on some uncovered element until all elements belong to disjoint cycles. We consider an example.

Example 90. We consider the permutation

(1, 2, 3)(3, 5)(3, 4, 5)(2, 4)(1, 3, 4)(1, 2, 3, 4, 5)

We evaluate this permutation as follows.

� We begin by selecting 1 and opening a cycle (1. Under (1, 2, 3, 4, 5) we see 1 7→ 2. We then move to
(1, 3, 4), under which 2 is a fixed point. Then under (2, 4), 2 7→ 4. Next, we see 4 7→ 5 under (3, 4, 5).
Then 5 7→ 3 under (3, 5), and 3 7→ 1 under (1, 2, 3). So 1 is a fixed point and we close the cycle: (1).

� Next, we select 2. Under (1, 2, 3, 4, 5), 2 7→ 3. We then see 3 7→ 4 under (1, 3, 4). Under (2, 4), 4 7→ 2.
The cycle (3, 4, 5) fixes 2, as does (3, 5). So we finally have 2 7→ 3, yielding (2, 3.

� By similar analysis, we see 3 7→ 4 7→ 1 7→ 2, so we close (2, 3).

� The only two uncovered elements are now 4 and 5. Selecting 4, we obtain 4 7→ 5 7→ 3 7→ 5. So we have
(4, 5. Then we see 5 7→ 1 7→ 3 7→ 4, so we close (4, 5).

Thus:

(1, 2, 3)(3, 5)(3, 4, 5)(2, 4)(1, 3, 4)(1, 2, 3, 4, 5) = (2, 3)(4, 5)

The Cycle Decomposition Algorithm provides us with a couple nice facts.

Theorem 3.2. Let c1, c2 be disjoint cycles. Then c1c2 = c2c1.

Proof. We apply the Cycle Decomposition algorithm to c1c2 starting with the elements in c2, to obtain c2c1.

54

Remark: This generalizes for any product of n disjoint cycles.

Theorem 3.3. Let (x1, . . . , xn) be a cycle. Then |(x1, . . . , xn)| = n.

Proof. Consider (x1, . . . , xn)
n =

∏n
i=1(x1, . . . , xn). Applying the cycle decomposition algorithm, we see x1 7→

x2 7→ . . . 7→ xn 7→ x1. We iterate on this procedure for each element in the cycle to obtain
∏n

i=1(x1, . . . , xn) =
(1), the identity permutation. So |(x1, . . . , xn)| ≤ n. Applying the cycle decomposition procedure to (x1, . . . , xn)

k

for any k ∈ [n − 1], and we see x1 7→ xk, x2 7→ xk+1, . . . , xn 7→ xn+k+1 where the indices are taken modulo
n.

3.1.4 Group Homomorphisms and Isomorphisms

In the exposition of the Dihedral group, we have already defined the notion of a graph isomorphism. Recall
that a graph isomorphism is a bijection from the vertex sets of two graphs G and H, that preserves adjacencies.
The group isomorphism is defined similarly. The one change is the notion of a homomorphism. While a graph
homomorphism preserves adjacencies, a group homomorphism preserves the group operation. Formally:

Definition 86 (Group Homomorphism). Let (G, ⋆) and (H, ⋄) be groups. A group homomorphism from G to
H is a function ϕ : G → H such that ϕ(x ⋆ y) = ϕ(x) ⋄ ϕ(y) for all x, y ∈ G. Omitting the formal operation
symbols (as is convention), the homomorphism condition can be written as ϕ(xy) = ϕ(x)ϕ(y).

Example 91. Let G = Z4 and H = Z2. The function ϕ : Z4 → Z2 sending 04 and 24 to 02, and 14 and 34 to
12 is a homomorphism. We verify as follows. Let x4, y4 ∈ Z4. We have x4 + y4 = x+ y4. We have x+ y2 = 02
if and only if x+ y4 ∈ {04, 24} if and only if x4 + y4 ∈ {04, 24}. So ϕ is a homomorphism.

We now introduce the notion of a group isomorphism.

Definition 87 (Group Isomorphism). Let G,H be groups. A group isomorphism is a bijection ϕ : G → H
that is also a group homomorphism. We say that G ∼= H (G is isomorphic to H) if there exists an isomorphism
ϕ : G→ H.

We consider a couple examples of group isomorphisms.

Example 92. Let G be a group. The identity map id : G→ G is an isomorphim.

Example 93. Let exp : R → R+ be given by x 7→ ex. This map is a bijection, as we have a well-defined inverse
function: the natural logarithm. We easily verify the homomorphism condition: exp(x+ y) = ex+y = exey.

There are several important problems relating to group isomorphisms:

� Are two groups isomorphic?

� How many isomorphisms exist between two groups?

� Classify all groups of a given order.

In some cases, it is easy to decide if two groups are (not) isomorphic. In general, the group isomorphism
problem is undecidable; no algorithm exists to decide if two arbitrary groups are isomorphic. In particular, if
two groups G ∼= H, the following necessary conditions hold:

� |G| = |H|

� G is Abelian if and only if H is Abelian

� |x| = |ϕ(x)| for every x ∈ G and every isomorphism ϕ : G→ H.

It is quite easy to verify that the isomorphism relation preserves commutativity. Consider an isomorphism
ϕ : G → H and let a, b ∈ G. If G is Abelian, then ab = ba. Applying the isomorphism, we have
ϕ(a)ϕ(b) = ϕ(b)ϕ(a). As ϕ is surjective, it follows that H is also Abelian.

Similarly, it is quite easy to verify that for any isomorphism ϕ that |x| = |ϕ(x)|. We prove a couple lemmas.

Lemma 3.1. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then ϕ(1G) = 1H .

55

Proof. Recall that ϕ(1G) = ϕ(1G · 1G). Applying the homomorphism, we obtain that ϕ(1G) = ϕ(1G)ϕ(1G) =
ϕ(1G) · 1H . By cancellation, we obtain that ϕ(1G) = 1H .

With Lemma 3.1 in mind, we prove this next Lemma.

Lemma 3.2. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then |x| ≥ |ϕ(x)|.

Proof. Let n = |x|. So ϕ(xn) = ϕ(x)n = ϕ(1G) = 1H . Thus, |ϕ(x)| ≤ n.

We now show that isomorphisms are closed under inverses.

Theorem 3.4. Let G,H be groups and let ϕ : G → H be an isomorphism. Then ϕ−1 : H → G is also an
isomorphism.

Proof. An isomorphism is a bijection, so ϕ−1 : H → G exists and is a function. It suffices to show that ϕ−1 is
a homomorphism. Let a, b ∈ G and c, d ∈ H such that ϕ(a) = c and ϕ(b) = d. So ϕ(ab) = ϕ(a)ϕ(b) = cd. We
apply ϕ−1 to obtain ϕ−1(cd) = ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ϕ(ab)), with the last equality as ϕ is a homomorphism. So
ϕ−1(ϕ(ab)) = ab. Similarly, ϕ−1(c)ϕ−1(d) = ab. So ϕ−1 is a homomorphism, and therefore an isomorphism.

We now use Lemma 3.2 and Theorem 3.4 to deduce that isomorphism preserves each element’s order.

Theorem 3.5. Let G,H be groups and let ϕ : G→ H be an isomorphism. Then |x| = |ϕ(x)| for all x ∈ G.

Proof. We have |x| ≥ |ϕ(x)| from Lemma 3.2. By Theorem 3.4, ϕ−1 is an isomorphism. So we interchange the
roles of x and ϕ(x) and apply Lemma 3.2, to obtain that |ϕ(x)| ≥ |x|.

We conclude this section with a classification result. The proof of this theorem requires machinery we do not
presently have; namely, Lagrange’s Theorem which states that for any subgroup H of a finite group G, |H|
divides |G|. We defer the proof of Lagrange’s Theorem until the next section.

Theorem 3.6. Every group of order 6 is either S3 or Z6.

3.1.5 Group Actions

The notion of a group action is one of the most powerful and useful notions from algebra. Intuitively, a group
action is a discrete dynamical process on a set of elements that partitions the set. The structure and number of
these equivalence classes provide important insights in algebra, combinatorics, and graph theory. We formalize
the notion of a group action as follows.

Definition 88 (Group Action). Let G be a group and let A be a set. A group action is a function · : G×A→ A
(written g · a for all g ∈ G and a ∈ A) satisfying:

1. g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G and all a ∈ A.

2. 1 · a = a for all a ∈ A

We first consider several important examples of group actions:

Example 94. Let G be a group and let A be a set. The action in which g · a = a for all g ∈ G and all a ∈ A
is known as the trivial action. In this case, σg = (1) for all g ∈ G. The trivial action provides an example of
why it is sufficient for G to act on itself in order to establish an isomorphism to a permutation group.

Example 95. Let A be a set and let G = Sym(A). The action of Sym(A) on A is given by σ · a = σ(a) for
any permutation σ and element a ∈ A.

Example 96. Let G = D2n and let A = V (Cn), the vertex set of the cycle graph Cn. D2n acts on the vertices

of Cn by rotation and reflection. In particular, r = (1, 2, . . . , n) and s =
∏⌊n/2⌋

i=2 (i, n− i+ 1).

Before providing examples of group actions, we begin by proving Cayley’s Theorem which yields that every
group action has a permutation representation. That is, if the group G acts on the set A, G permutes A.
Formally, we have the following.

Theorem 3.7 (Cayley’s Theorem). Let G act on the set A. Then there exists a homomorphism from G into
Sym(A). When A = G (that is, when G is acting on itself), we have an isomorphism from G to a group of
permutations.

56

Proof. For each g ∈ G, we define the map σg : A→ A by σg(a) = g · a. We prove the following propositions.

Proposition 3.3. For each g ∈ G, the function σg is a permutation. Furthremore, {σg : g ∈ G} forms a
group.

Proof. In order to show that σg is a permutation, it suffices to show that σg has a two-sided inverse. Consider
σg−1 , which exists as G is a group. We have (σg−1 ◦ σg)(a) = g−1 · (g · a) = (g−1g) · a = a. So σg−1 ◦ σg = (1),
the identity map. As g was arbitrary, we exchange g and g−1 to obtain that σg ◦ σg−1 = (1) as well. So σg has
a two-sided inverse, and so it is a permutation. As G is a group, we have that H = {σg : g ∈ G} is non-empty
and closed under inverses, with σ1 ∈ H as the identity. As each σi, σj ∈ H is a permutation of A, σi ◦ σj is
also a permutation of A. In particular, for any i, j ∈ G and any a ∈ A, we have that:

(σi ◦ σj)(a)
= σi(j · a)
= i · (j · a)
= ij · a
= σij(a).

So σi ◦ σj = σij . As G is a group, ij ∈ G. So σij ∈ H. Thus, H is a group as desired.

Proposition 3.3 gives us our desired subgroup of Sym(A). We construct a homomorphism φ : G → Sym(A),
such that φ(G) = {σg : g ∈ G}. We refer to φ as the permutation representation of the action. When G acts
on itself; that is, when G = A, G ∼= φ(G), which is a subgroup of Sym(G).

Proposition 3.4. Define φ : G→ Sym(A) by g 7→ σg. This function φ is a homomorphism.

Proof. We show that φ is a homomorphism. Let g1, g2 ∈ G. We have that:

ϕ(g1g2)(a)

= σg1g2(a)

= g1g2 · a
= g1 · (g2 · a)
= σg1(σ2(a))

= ϕ(g1)ϕ(g2)(a).

So ϕ is a homomorphism.

We conclude by showing G ∼= φ(G), when G acts on itself by left multiplication.

Proposition 3.5. Suppose G acts on itself by left multiplication, and let φ : G→ Sym(G) be the corresponding
permutation representation. Then G ∼= φ(G).

Proof. The proof of Proposition 3.4 provides that ϕ is a homomorphism, which is surjective onto φ(G). It
suffices to show φ is injective. Let g, h ∈ G such that φ(g) = φ(h). So σg = σh, which implies that the
permutations agree on all points in G. In particular, σg(1) = σh(1) = g1 = h1 = g = h. So φ is injective, and
we conclude G ∼= φ(G).

This concludes the proof of Cayley’s Theorem.

It turns out that it is not necessary for G to act on itself by left multiplication in order for the permutation
representation of the action to be isomorphic to G. To this end, we introduce the notion of the kernel and a
faithful action.

Definition 89 (Kernel of the Action). Suppose G acts on a set A. The kernel of the action is defined as
{g ∈ G : g · a = a, for all a ∈ A}.

Definition 90 (Faithful Action). Suppose G acts on the set A. The action is said to be faithful if the kernel
of the action is {1}.

57

In particular, if the action is faithful, then each permutation σg is unique. So G ∼= φ(G), where φ is the
permutation representation of the action.

One application of group actions is a nice, combinatorial proof of Fermat’s Little Theorem. We have already
given this proof with Theorem 1.14, but abstracted away the group action. We offer the same proof using the
language of group actions below.

Theorem 3.8 (Fermat’s Little Theorem). Let p be a prime number and let a ∈ [p − 1]. Then ap−1 ≡ 1
(mod p).

Proof. Let Λ be an alphabet of order p. Let Zp
∼= ⟨(1, 2, . . . , p)⟩ act on Λp by cyclic rotation. The orbit of a

string ω ∈ Λp, denoted
O(ω) = {g · ω : g ∈ Zp},

consists of either a single string or p strings. Each orbit is an equivalence class under the action. There are
a orbits with a single string, where each string is simply a single character repeated p times. The remaining
ap − a strings are partitioned into orbits containing p strings. So p

∣∣(ap − a), which implies ap ≡ a (mod p).
This is equivalent to ap−1 ≡ 1 (mod p).

Lagrange’s Theorem is similarly proven. In fact, Fermat’s Little Theorem is a special case of Lagrange’s
Theorem.

Theorem 3.9 (Lagrange’s Theorem). Let G be a finite group, and let H ≤ G. Then the order of H divides
the order of G.

Proof. Let H act on G by left multiplication. Now fix g ∈ G. We show that the orbit of g,

O(g) = {h · g : h ∈ H},

has size |H|. We establish a bijection φ : H → O(g), sending h 7→ h ·g. By definition of O(g), φ is surjective. It
suffices to show that φ is injective. Let h1, h2 ∈ H such that φ(h1) = φ(h2). So h1 · g = h2 · g. By cancellation,
h1 = h2. So φ is injective, as desired. We conclude that |O(g)| = |H|. As g was arbitrary, it follows that the
elements of G are partitioned into orbits of order |H|. Thus, |H| divides |G|, as desired.

3.1.6 Algebraic Graph Theory- Cayley Graphs

We introduce the notion of a Cayley Graph, which provides an intuitive approach to visualizing the structure
of a group. Formally, we define the Cayley Graph as follows.

Definition 91 (Cayley Graph). Let G be a group and let S ⊂ G such that 1 ̸∈ S and for every x ∈ S, x−1 ∈ C.
The Cayley Graph with respect to G and S is denoted Cay(G,S) where the vertex set of Cay(G,S) is G. Two
elements g, h ∈ G are adjacent in Cay(G,S) if there exists s ∈ S such that gs = h. We refer to S as the Cayley
set.

We begin with an example of a Cayley graph- the Cycle graph.

Example 97. Let n ≥ 3, and let G = Zn under the operation of addition. Let S = {±1}. So the vertices of
Cay(G,S) are the congruence classes 0, 1, . . . , n− 1. We have an edge ij if and only if j− i = 1 or j− i = n− 1.

Example 98. The Cycle graph is in particular an undirected circulant graph. Let G = Zn, where the operation
is addition. Let S ⊂ Zn such that 0 ̸∈ S and x ∈ S =⇒ −x ∈ S. The Cayley graph Cay(G,S) is an undirected
circulant graph. The complete graph Kn is a Cayley graph with G = Zn and S = Zn \ {0}. Similarly, the
empty graph is a Cayley graph with G = Zn and S = ∅. We illustrate below the case where G = Z10 with
S = {±1,±3}.

58

We now develop some theory about Cayley Graphs. The first theorem establishes that Cayley graphs are
vertex transitive; that is, for every u, v in the group G, there exists an automorphism φ of the Cayley graph
mapping φ(u) = v. The key idea is that G acts transitively on itself by left multiplication. This action induces
a transitive action on the Cayley graph.

Theorem 3.10. Let G be a group with S ⊂ G as the Cayley set. Let Cay(G,S) be the associated Cayley graph.
For any u, v ∈ G, there exists a ϕ ∈ Aut(Cay(G,S)) such that ϕ(u) = v. (That is, every Cayley graph is vertex
transitive).

Proof. Let u, v ∈ G be fixed. As G is a group, there exists a unique g ∈ G such that gu = v. Let φg : G → G
be the function mapping φg(u) = gu. Clearly, φg(u) = v, as desired. The proof of Cayley’s Theorem provides
that φg is an permutation of G. So it suffices to show that φg induces a graph homomorphism on Cay(G,S).
Let x, y ∈ G be adjacent in Cay(G,S). So there exists a unique s ∈ S such that xs = y. Now φg(x) = gx and
φg(y) = gy = gxs = φg(x)s. So s ∈ S still satisfies φg(x)s = φg(y). Thus, φg induces a graph homomorphism
on Cay(G,S). We conclude that φg ∈ Aut(Cay(G,S)).

In order for a graph to be vertex-transitive, it is necessary for the graph to be regular. The next lemma shows
that a Caley graph Cay(G,S) is in fact |S|-regular.

Lemma 3.3. Let G be a group and with S ⊂ G as the Cayley set. Let Cay(G,S) be the associated Cayley
graph. Then Cay(G,S) is |S|-regular.

Proof. Let g ∈ G. The |S| neighbors of g are of the form gs, for s ∈ S. As our choice of g was arbitrary, we
conclude that Cay(G,S) is |S|-regular.

We next show that a Cayley graph over a finite group is connected if and only if its Cayley set generates the
entire group. The idea is to think of each vertex in the path as a multiplication. So the edge xy in Cay(G,S)
is a multiplication by yx−1. And so a path is a sequence of these multiplications, where the inverses in the
interior of the expression cancel. Formally, we have the following.

Theorem 3.11. Let G be a finite group and let S be the Cayley set. The Cayley graph Cay(G,S) is connected
if and only if ⟨S⟩ = G.

Proof. Suppose first that Cay(G,S) is connected. Define x1 := 1, and let xk ∈ G. As Cay(G,S) is con-
nected, there exists a path from x1 to xk in G. Let x1x2 . . . xk be a shortest path from x1 to xk in G.
By definition of the Cayley graph, x−1

i xi−1 ∈ S for each i ∈ {2, . . . , k}. Applying the multiplications:
(x−1

k xk−1)(x
−1
k−1xk−2) . . . (x

−1
2 x1) = x−1

k ∈ ⟨S⟩. As xk was arbitrary, it follows that S generates G.

We now show by contrapositive that ⟨S⟩ = G implies Cay(G,S) is connected. Suppose Cay(G,S) is not
connected. Let u, v ∈ Cay(G,S) such that no u− v path exists. Let y be the unique solution to uy = v. Then
y ̸∈ ⟨S⟩, so ⟨S⟩ ≠ G.

We conclude by providing a vertex-transitive graph that is not a Cayley graph- namely, the Petersen graph.

Theorem 3.12. The Petersen Graph is not a Cayley Graph.

Proof. Suppose to the contrary that the Petersen graph is a Cayley graph. There are two groups of order 10:
Z10 and D10. As the Petersen graph is 3-regular, we have that a Cayley set S ⊂ G has three elements. So
either one or all three elements are their own inverses. We consider the following cases.

� Case 1: Suppose G = Z10. Then the Cayley set S = {a,−a, 5}. Observe that (0, a, 5 + a, 5) forms a
sequence of vertices that constitute a 4-cycle in Cay(Z10, S). However, any pair of non-adjacent vertices
in the Petersen graph share precisely one common neighbor, so the Petersen graph has no four-cycle. So
the Petersen graph is not the Cayley graph of Z10.

� Case 2: Now suppose instead that G = D10. As the Petersen graph is connected, S necessarily generates
D10. So S necessarily contains an element of the form sri for some i. If S has precisely one element
of order 2, then S = {ri, r−i, srj} for some i, j ∈ [4]. In this case, 1 is adjacent to both ri and srj

in Cay(D10, S). However, ri and srj are both adjacent to srj+i, creating a four-cycle consisting of
(1, ri, srj+i, srj), a contradiction.

59

Suppose instead S = {sri, srj , srk} for distinct i, j, k ∈ {0, 1, 2, 3, 4}. We have 1 is adjacent to each
element of S in Cay(D10, S). The other two neighbors of srj are rj−i and rj−k. We next show that srk

is also adjacent to rj−k. Observe that:

rj−k · srj = rj−k · r−js

= r−ks

= srk.

So srj ∈ S satisfies rj−k·srj = srk, as desired. So Cay(D10, S) has a four-cycle of the form (1, srj , rj−k, srk).
In this case, Cay(D10, S) is not isomorphic to the Petersen graph.

As we have exhausted all possibilities, we conclude that the Petersen graph is not a Cayley graph.

3.1.7 Algebraic Graph Theory- Transposition Graphs

We now provide some exposition on transpositions. A permutation of [n] can be viewed as a directed graph
with vertex set [n], which is the disjoint union of directed cycles. Each directed cycle in the grpah corresponds
to a cycle in the permutation’s cycle decomposition. Furthermore, each permutation cycle can be decomposed
as the product of transpositions, or 2-cycles. The transpositions are viewed as edges. We adapt this framing
to study the Symmetry group from an algebraic standpoint.

Formally, let T be a set of transpositions. We define the graph T with vertex set [n] and edge set

E(T) = {ij : (ij) ∈ T }.

We say that T is generating set if Sym(n) = ⟨T ⟩, and T is minimal if for any g ∈ T , T \{g} is not a generating
set. Note that T is not a Cayley graph, but it is useful in studying the Cayley graphs of Sym(n).

We begin with an analogous result to Theorem 3.11, for T rather than Cayley Graphs.

Lemma 3.4. Let T be a set of transpositions from Sym(n). Then T is a generating set for Sym(n) if and only
if its graph T is connected.

Proof. Let T be the graph of T . Suppose (1i), (ij) ∈ T . Then:

(ij)(1i)(ij) = (1j) ∈ ⟨T ⟩.

By induction, if there exists a 1 − k path in T , then (1k) ∈ ⟨T ⟩. It follows that for any x, y on the same
component, then (xy) ∈ ⟨T ⟩. So the transpositions belonging to a certain component generate the symmetric
group on the vertices of that component. Thus, if T is connected, then Sn = ⟨T ⟩.

We next show that if ⟨T ⟩ = Sym(n), then T is connected. This will be done by contrapositive. If T is not
connected, then no transposition of T can map a vertex from one component to the other.

Remark: The components of T are precisely the orbits of ⟨T ⟩ acting on [n].

Lemma 3.4 is quite powerful. It implies that every minimal generating set T of transpositions has the same
cardinality. In particular, the graph of any minimal generating set is a spanning tree, so every minimal
generating set has n− 1 transpositions. This allows us to answer the following questions.

1. Is a set of transpositions T of Sn a generating set?

2. Is a generating set of transpositions T of Sn minimal?

3. If a set of transpositions is a generating set, which transpositions can be removed while still generating
Sn?

4. If a set of transpositions is not a generating set, which transpositions are missing?

60

In order to answer these questions, we reduce to the spanning tree problem and the connectivity problem.
Question 1 is answered by Lemma 3.4- we simply check if the graph T corresponding to T is connected, which
can be done using Tarjan’s algorithm which runs in O(|V |+ |E|) time. In order to answer Question 2, Lemma
3.4 implies that it suffices to check if T is a spanning tree. So first, we first check if the graph T is connected.
If so, it suffices to check if T has n− 1 edges, as that is the characterization of a tree.

Using our theory of spanning trees, we easily answer Question 3 as well. We can construct a spanning tree by
removing an edge from a cycle, then applying the procedure recursively to the subgraph. As the transpositions
of T correspond to edges of T , this fact about spanning trees allows us to remove transpositions from T while
allowing the modified T to generate Sym(n).

Finally, to answer Question 4, we simply select pairs of vertices from two components of T and add an edge
e = ij, which corresponds to setting T := T ∪ {(ij)}. We repeat the procedure for the modified T until it is
connected.

We conclude with a final lemma, which relates the graph T for a set of transpositions T to the Cayley graph
Cay(Sym(n), T).

Lemma 3.5. Let T be a non-empty set of transpositions from Sym(n), and let g, h ∈ T . Suppose that the
graph T of T contains no triangles. If gh ̸= hg, then g and h have exactly one common neighbor in the Cayley
graph Cay(Sym(n), T). Otherwise, g and h have exactly two common neigbors in Cay(Sym(n), T).

Proof. The neighbors of g in Cay(Sym(n), T) are of the form gx, where x ∈ T . In particular, if g, h have a
common neighbor in Cay(Sym(n), T), then there exist x, y ∈ T satisfying gx = hy.

Suppose that gh = hg. Then g and h have disjoint support. So gh = hg is a common neighbor of g, h. As g, h
are transpositions, g2 = h2 = 1, so g, h have a common neighbor of (1). These are precisely the two common
neighbors of g, h in Cay(Sym(n), T).

Suppose instead hg ̸= gh. Then g, h are not disjoint. Without loss of generality, suppose g = (1, 3) and
h = (1, 2). Then hg = (1, 2, 3), which has three factorizations: (1, 2)(1, 3) = (1, 3)(2, 3) = (2, 3)(1, 2). Note
that if (2, 3) ∈ T , then the vertices 1, 2, 3 induce a triangle in T , the graph of T . Thus, (2, 3) ̸∈ T . So (1, 2)(1, 3)
is the unique factorization of hg in T , yielding (1) as the unique neighbor of g, h.

3.2 Subgroups

One basic approach in studying the structure of a mathematical satisfying a set of axioms is to study subsets
of the given object which satisfy the same axioms. A second basic method is to collapse a mathematical
object onto a smaller object sharing the same structure. This collapsed structure is known as a quotient. Both
of these themes recur in algebra: in group theory with subgroups and quotient groups; in ring theory with
subrings and quotient rings; in linear algebra with subspaces and quotient spaces of vector spaces; etc. A clear
understanding of subgroups is required to study quotient groups, with the notion of a normal subgroup.

Definition 92 (Subgroup). Let G be a group, and let H ⊂ G. H is said to be a subgroup of G if H is also a
group. We denote the subgroup relation as H ≤ G.

We begin with some examples of subgroups.

Example 99. Z ≤ Q and Q ≤ R with the operation of addition.

Example 100. The group of rotations ⟨r⟩ ≤ D2n

Example 101. D2n ≤ Sn

Example 102. The set of even integers is a subgroup of Z with the operation of adddition.

We begin with the subgroup test, which allows us to verify a subset H of a group G is actually a subgroup
without verifying the group axioms.

Proposition 3.6 (The Subgroup Criterion). Let G be a group, and let H ⊂ G. H ≤ G if and only if:

61

1. H ̸= ∅

2. For all x, y ∈ H, xy−1 ∈ H

Furthermore, if H is finite, then it suffices to check that H is non-empty and closed under multiplication.

Proof. If H ≤ G, then conditions (1) and (2) follow immediately from the definition of a group. Conversely,
suppose that H satisfies (1) and (2). Let x ∈ H (such an x exists because H is non-empty). As H satisfies
condition (2), we let y = x to deduce that xx−1 = 1 ∈ H. As H contains the identity of G, we apply property
(2) to obtain that 1x−1 = x−1 ∈ H for every x ∈ H. So H is closed under inverses. We next show that H is
closed under product. Let x, y−1 ∈ H. Then by property (2) and the fact that (y−1)−1 = y, xy ∈ H. As the
operation of G is associative, we conclude that H is a subgroup of G.

Now suppose that H is finite and closed under multiplication. Let x ∈ H. As H is closed under multiplication,
⟨x⟩ ⊂ H. As H is finite, x−1 ∈ ⟨x⟩. So H is closed under inverses and H ≤ G.

Example 103. We use the subgroup criterion to verify that the set of even integers is a subgroup of Z over
addition. We have that 0 is an even integer. Now let 2x, 2y be even integers where x, y ∈ Z. We have
(2y)−1 = −2y, so 2x(2y)−1 = 2x − 2y = 2(x − y). As Z is closed under addition and inverses, x − y ∈ Z. So
2(x− y) is an even integer.

We explore several families of subgroups, which yield many important examples and insights in the study of
group theory. Two important problems in group theory include studying (a) how “far away” a group is from
being commutative; and (b) in a group homomorphism ϕ : G → H, which members of G map to 1H? On
the surface, these problems do not appear to be related. In fact, both these problems are closely related. We
examine a specific class of group action known as the action of conjugation. Studying the kernels and stabilizers
of these actions provide invaluable insights about the level of commutativity of for the given group. We begin
by studying the commutativity of a group, with the centralizer, normalizer, and center of a group.

Definition 93 (Centralizer). Let G be a group and let A ⊂ G be non-empty. The centralizer of G is the set:
CG(A) = {g : ga = ag, for all a ∈ A}. That is, CG(A) is the set of elements of G which commute with every
element of A.

Remark: It is common to write CG(A) = {g ∈ G : gag−1 = a, for all a ∈ A}, which is equivalent to what is
presented in the definition. We see the notation gag−1 again when discussing the normalizer, and more generally
when discussing the action of conjugation. By convention, when A = {a}, we write CG({a}) = CG(a).

Proposition 3.7. Let G be a group, and let A be a non-empty subset of G. Then CG(A) ≤ G.

Proof. We appeal to the subgroup criterion. Clearly, 1 ∈ CG(A), so CG(A) ̸= ∅. Now suppose x, y ∈ CG(A)
and let a ∈ A. It follows that xya = xay = axy, as x, y commute with a. So CG(A) is closed under the group
operation. Finally, if g ∈ CG(A) and a ∈ A, we have gag−1 = a, which is equivalent to ag−1 = g−1a, so CG(A)
is closed under inverses. So CG(A) ≤ G.

Example 104. Let G be a group and let a ∈ G. Then ⟨a⟩ ≤ CG(a), as powers of a commute with a by
associativity of the group operation.

Example 105. Let G be an Abelian group. Then CG(A) = G for any non-empty A ⊂ G.

Example 106. Recall Q8, the Quaternion group of order 8. By inspection, we see that CQ8(i) = {±1,±i}.
Observe that ij = k while ji = −k, so j ̸∈ CQ8(i). If we consider −j instead, we see that −ji = k while
i(−j) = k, so −j ̸∈ CQ8(i). By similar argument, it can be verified that ±k ̸∈ CQ8(i).

We could alternatively use Lagrange’s Theorem to compute CQ8(i). Recall that Lagrange’s Theorem states
that |CQ8(i)| divides |Q8| = 8. As ⟨i⟩ ≤ CQ8(i), we have |CQ8(i)| ∈ {4, 8}. As j ̸∈ CQ8(i), |CQ8(i)| ≠ 8.
Therefore, CQ8(i) = ⟨i⟩.

We next introduce the notion of the center of a group, which is a special case of the centralizer.

Definition 94 (Center). LetG be a group. The center ofG is the set Z(G) = {g ∈ G : gx = xg, for all x ∈ G}.
That is, the center is the set of elements in G which commute with every element in G.

62

Remark: Observe that Z(G) = CG(G), so Z(G) ≤ G. We also clearly have:

Z(G) =
⋂
g∈G

CG(g).

The next subgroup we introduce is the normalizer, which is a generalization of the centralizer. Intuitively, the
centralizer is the set of elements that commute with a non-empty A ⊂ G. However, the normalizer simply
preserves the set A under this notion of conjugation. That is, if g is in the normalizer of A, then x ∈ A, there
exists a y ∈ A such that gx = yg. So the elements of A may map to each other rather than preserved by
commutativity. The normalizer is formalized as follows.

Definition 95 (Normalizer). Let G be a group, and let A ⊂ G. The normalizer of A with respect to G is the
set NG(A) = {g ∈ G : gAg−1 = A}.

Clearly, CG(A) ≤ NG(A) for any non-empty A ⊂ G. We now compute the centralizer, center, and normalizer
for D8.

Example 107. If G is Abelian, Z(G) = CG(A) = NG(A) = G for any non-empty A ⊂ G.

Example 108. Let G = D8 and let A = ⟨r⟩. Clearly, A ≤ CG(A). As sr = r−1s ̸= rs, s ̸∈ CG(A). Now
suppose some sri ∈ CG(A). Then sr

ir−i = s ∈ CG(A), a contradiction. So CG(A) = A.

Example 109. ND8(⟨r⟩) = D8. We consider:

s⟨r⟩s = {s1s, srs, sr2s, sr3s} = {1, r−1, r2, r−3}

As ND8(⟨r⟩) is a group, s is multiplied by each rotation. So we obtain ND8(⟨r⟩) = D8.

Example 110. Z(D8) = {1, r2}. As Z(D8) ≤ CD8(⟨r⟩), it suffices to show r and r3 do not commute with
some element of D8. We have rs = sr−1 by the presentation of D8. Similarly, r3s = sr−3. So Z(D8) = {1, r2}.

We next introduce the stabilizer of a group action, which is a special subgroup which contains elements of G
that fix a specific element a ∈ A.

Definition 96 (Stabilizer). Let G act on the set A. For each a ∈ A, the stabilizer Stab(a) = {g ∈ G : g ·a = a}.

Remark: Clearly, the Kernel of the action is simply:⋂
a∈A

Stab(a),

which contains the set of all group elements g that fix every point in A.

We defined the kernel in the previous section on group actions. More generally, we define the kernel of a
homomorphism as follows.

Definition 97 (Kernel of a Homomorhism). Let ϕ : G→ H be a group homomorphism. We denote the kernel
of the homomorphism ϕ as ker(ϕ) = ϕ−1(1H), or the set of elements in G which map to 1H under ϕ.

Remark: Recall that the Kernel of a group action is the set of group elements which fix every element of A.
We equivalently define the Kernel of a group action as ker(ϕ) = ϕ−1((1)), where ϕ : G→ SA is the homomor-
phism defined in Cayley’s theorem sending g 7→ σg, a permutation. Both the Kernel and the Stabilizers are
subgroups of G.

We now explore the relation between normalizers, centralizers, and centers, and the kernels and stabliziers of
group actions. In particular, normalizers, and centers of groups are stabilizers of group actions. We begin with
the action of conjugation.

Definition 98 (Action of Conjugation). Let G be a group, and let A be a set. G acts on A by conjugation,
by mapping (g, a) ∈ G×A to gag−1.

Proposition 3.8. Suppose G acts on 2G by conjugation. Then NG(A) = GA, the stabilizer of A.

63

Proof. Let A ∈ 2G. Let g ∈ GA. Then gAg−1 = A, so g ∈ NG(A) and GA ⊂ NG(A). Conversely, let
h ∈ NG(A). By definition of the normalizer, hAh−1 = A, so h fixes A. Thus, h ∈ GA and NG(A) ⊂ GA.

Remark: It follows that the kernel of the action of G on 2G by conjugation is:⋂
A⊂G

NG(A).

By similar analysis, we consider the action of NG(A) on the set A by conjugation. So for g ∈ G, we have:

g : a 7→ gag−1.

By definition of NG(A), this maps A→ A. We observe that CG(A) is the kernel of this action. It follows from
this that CG(A) ≤ NG(A). A little less obvious is that Z(G) is the kernel of G acting on itself by conjugation.

Proposition 3.9. Let G act on itself by conjugation. The kernel of this action Ker = Z(G).

Proof. Let g ∈ Ker, and let h ∈ G. Then ghg−1 = h by definition of the Kernel. So gh = hg, and g ∈ Z(G).
So Ker ⊂ Z(G). Conversely, let x ∈ Z(G). Then xh = hx for all h ∈ G. So xhx−1 = h for all x ∈ Ker and
Z(G) ⊂ Ker.

3.2.1 Cyclic Groups

In this section, we study cyclic groups, which are generated by a single element. The results in this section are
number theoretic in nature. There is relatively little meat in this section, but the results are quite important
for later. So it is important to spell out certain details. We begin with the definition of a cyclic group below.

Definition 99 (Cyclic Group). A group G is said to be cyclic if G = ⟨x⟩ = {xn : n ∈ Z} for some x ∈ G.

Remark: As the elements of G are of the form xn, associativity, closure under multiplication, and closure
under inverses follows immediately. We have that x0 = 1, so G = ⟨x⟩ is a group.

Recall that the order of an element x in a group is the least positive integer n such that xn = 1. Equivocally,
|x| = |⟨x⟩|. We formalize this as follows.

Proposition 3.10. If H = ⟨x⟩, then |H| = |x|. More specificially:

1. If |H| = n <∞, then xn = 1 and 1, x, . . . , xn−1 are all distinct elements of H; and

2. If |H| = ∞, then xn ̸= 1 for all n ̸= 0; and xa ̸= xb for all a ̸= b ∈ Z.

Proof. Suppose first that |x| = n < ∞. Let a, b ∈ {0, . . . , n − 1} be distinct such that xa = xb. Then
xb−a = x0 = 1, contradicting the fact that n is the minimum integer such that xn = 1. So all the elements
of 1, x, . . . , xn−1 are unique. It suffices to show that H = {1, x, . . . , xn−1}. Consider xt. By the Division
Algorithm, xt = xnq+k for some q ∈ Z and k ∈ {0, . . . , n−1}. Then xt = (xn)qxk = 1qxk = xk ∈ {1, . . . , xn−1}.
So |H| = |x|.

Now suppose |x| = ∞. So no positive power of x is the identity. Now suppose xa = xb for distinct integers a, b.
Clearly, xa−b ̸= x0 = 1; otherwise, we have a positive integer such that xn = 1, a contradiction. So distinct
powers of x are distinct elements of H, and we have |H| = ∞.

Remark: Proposition 3.10 allows us to reduce powers of x based on their congruence classes modulo |x|. In
particular, ⟨x⟩ ∼= Zn when |x| = n < ∞. If n = ∞, then ⟨x⟩ ∼= Z. In order to show this, we need a helpful
lemma.

Proposition 3.11. Let G be a group, and let x ∈ G. Suppose xm = xn = 1 for some m,n ∈ Z+. Then for
d = gcd(m,n), xd = 1. In particuar, if xm = 1 for some m ∈ Z, then |x| divides m.

64

Proof. By the Euclidean Algorithm, we write d = mr + ns, for appropriately chosen integers r, s. So
xd = xmr+ns = (xm)r · (xn)s = 1.

We now show that if xm = 1, then |x| divides m. If m = 0, then we are done. Now suppose m ̸= 0. We take
d = gcd(m, |x|). By the above argument, we have that xd = 1. As 1 ≤ d ≤ |x| and |x| is the least such positive
integer k that xk = 1, it follows that d = |x|. As d = gcd(m, |x|), it follows that d = |x| divides m.

We now show that every cyclic group is isomorphic to either the integers or the integers modulo n, for some
n. We first introduce the notion of a well-defined function, which we need for this next theorem.

Definition 100 (Well-Defined Function). A map ϕ : X → Y is well-defined if for every x, there exists a unique
y such that ϕ(x) = y. In particular, if X is a set of equivalence classes, then for any two a, b in the same
equivalence class, ϕ(a) = ϕ(b).

Theorem 3.13. Any two cyclic groups of the same order are isomorphic. In particular, we have the following.

1. If |⟨x⟩| = |⟨y⟩| = n <∞, then the map: ϕ : ⟨x⟩ → ⟨y⟩ sending xk 7→ yk is a well-defined isomorphism.

2. If ⟨x⟩ has infinite order, then the map ψ : Z → ⟨x⟩ sending k 7→ xk is a well-defined isomorphism.

Proof. Let ⟨x⟩, ⟨y⟩ be cyclic groups of finite order n. We show that xk 7→ yk is a well-defined isomorphism.
Let r, s be distinct positive integers such that xr = xs. In order for ϕ to be well-defined, it is necessary that
ϕ(xr) = ϕ(xs). As xr−s = 1, we have by Proposition 3.11 that n divides r− s. So xr = tn+ s. It follows that:

ϕ(xr) = ϕ(xtn+s)

= ytn+s

= (yn)tys

= ys = ϕ(xs).

So ϕ is well-defined. By the laws of exponents, we have:

ϕ(xaxb) = yab

= yayb

= ϕ(xa)ϕ(xb).

So ϕ is a homomorphism. It follows that since yk is the image of xk under ϕ, that ϕ is surjective. As
|⟨x⟩| = |⟨y⟩| = n, ϕ is injective. So ϕ is a homomorphism.

Now suppose ⟨x⟩ is infinite. We have from Proposition 3.10 that for any two distinct integers a, b that xa ̸= xb.
So ψ is well-defined and injective. It follows immediately from the rules of exponents that ψ is a homomorphism.
It suffices to show ψ is surjective. Let h ∈ ⟨x⟩. Then h = xk for some k ∈ Z. So k is the preimage of h under
ψ, and we have ψ is surjective. So ψ is an isomorphism.

We conclude this section with some additional results that are straight-forward to prove. This first proposition
provides results for selecting generators of a cyclic group.

Proposition 3.12. Let H = ⟨x⟩. If |x| = ∞, then H = ⟨xa⟩ if and only if a = ±1. If |x| = n < ∞, then
H = ⟨xa⟩ if and only if gcd(a, n) = 1.

Proof. Suppose that |H| = ∞. If a = ±1, then H = ⟨xa⟩. Conversely, let a ∈ Z such that H = ⟨xa⟩. If a = ±1,
then we are done. So suppose to the contrary that there a is an integer other than ±1 such that H = ⟨xa⟩.
Without loss of generality, suppose a > 0. Let b ∈ {−a+1, . . . ,−1, 1, . . . , a− 1}. No such integer k exists such
that ak = b. So it is necessary that a = ±1.

We now consider the case in which |H| = n < ∞. We have H = ⟨xa⟩ if and only if |xa| = |x|. This occurs if

and only if |xa| = n

gcd(n, a)
= n, which is equivalent to gcd(a, n) = 1. The Euler ϕ function counts the number

of integers relatively prime to the input, so there are ϕ(n) members of H which individually generate H.

We conclude this section with the following result.

65

Theorem 3.14. Let G = ⟨x⟩. Then every subgroup of G is also cyclic.

Proof. Let H ≤ G. If H = {1}, we are done. Suppose H ̸= {1}. Then there exists an element xa ∈ H where
a > 0 (if we selected xa with a < 0, then we obtain x−a ∈ H as H is closed under inverses, and so −a > 0).
By the Well-Ordering Principle, there exists a least positive b such that xb ∈ H. Clearly, ⟨xb⟩ ≤ H. Now
let xa ∈ H. Then by the Division Algorithm, xa = xkb+r for k ∈ Z and 0 ≤ r < b. So xr = xa(xb)−k. As
xa, xb ∈ H, so is xr. But since b is the least positive integer such that xb ∈ H, then r = 0. So H ≤ ⟨b⟩, and H
is cyclic.

3.2.2 Subgroups Generated By Subsets of a Group

In this section, we generalize the notion of a cyclic group. A cyclic group is generated by a single element.
We examine subgroups which are generated by one or more elements of the group, rather than just a single
element. The important result in this section is tht subgroups of a group G are closed under intersection.

Theorem 3.15. Let G be a group, and let A be a collection of subgroups of G. Then the intersection of all
the members of A is also a subgroup of G.

Proof. We appeal to the subgroup criterion. Let:

K =
⋂
H∈A

H.

As each H ∈ A is a subgroup of G, 1 ∈ H for each H ∈ A. So 1H ∈ K and we have K ̸= ∅. Now let x, y. As
x, y ∈ H for each H ∈ A, we have xy−1 also in each H ∈ A. So xy−1 ∈ K and we are done. So K ≤ G.

We now examine precisely the construction of the subgroup generated by a set A ⊂ G. Formally, we have the
proposition.

Proposition 3.13. Let A ⊂ G. Then:

⟨A⟩ =
⋂

A⊂H
H≤G

H.

Proof. Let A = {H ≤ G : A ⊂ H}. As ⟨A⟩ ∈ A, A ≠ ∅. Let

K =
⋂
H∈A

H.

Clearly, A ⊂ K. Since K ≤ G by Theorem 3.15, ⟨A⟩ ≤ K. As ⟨A⟩ is the unique minimal subgroup of G
containing A, it follows that ⟨A⟩ ∈ A and K ≤ ⟨A⟩.

3.2.3 Subgroup Poset and Lattice (Hasse) Diagram

The goal of this section is to provide another visual tool for studying the structure of the graph. While the
Cayley Graph describes the intuitive notion of spanning of a subset of a group, the lattice (or Hasse) diagram
depicts the subgroup relation using a directed graph. The lattice diagram and associated structure known as
a poset are quite useful in studying the structure of a group. In the section on quotients, we see immediate
benefit when studying the Fourth (or Lattice) Isomorphism Theorem. We begin with the definition of a poset.

Definition 101 (Partially Ordered Set (Poset)). A partially ordered set or poset is a pair (S,≤), where S is
a set and ≤ is a binary relation on S satisfying the following properties:

� Reflexivity: a ≤ a for all a ∈ S.

� Anti-Symmetry: a ≤ b and b ≤ a implies that a = b.

� Transitivity: a ≤ b and b ≤ c implies that a ≤ c.

Intuitively, a partial order behaves like the natural ordering on Z. Consider 3, 4, 5 ∈ Z. We have 3 ≤ 3. More
generally, a ≤ a for any a ∈ Z. So reflexivity holds. Transitivity similarly holds, as is illustrated with the
example that 3 ≤ 4 and 4 ≤ 5. We have 3 ≤ 5 as well. Anti-symmetry holds as well. We now consider some
other examples of posets.

66

Example 111. The set N with the relation of divisibility forms a poset. Recall the divisibility relation a
∣∣b if

there exists an integer q such that aq = b.

Example 112. Let S be a set. The subset relation ⊂ is a partial order over 2S .

Example 113. Let G be a group. Let G = {H : H ≤ G}. The subgroup relation forms a partial order over G.

We now describe how to construct the Hasse Diagram for a poset. The vertices of the Hasse diagram are the
elements of the poset S. There is a directed edge (i, j) if i ≤ j and there is no other element k such i ≤ k and
k ≤ j. In the poset of subgroups, the trivial subgroup {1} is at the root of the Hasse diagram and the group
G is at the top of the diagram. Careful placement of the elements of the poset can yield a simple and useful
pictoral representation of the structure. A directed path along the Hasse diagram provides information on the
transitivity relation. That is, the directed path H,J,K,M indicates that H ≤ J , J ≤ K, and K ≤ M . So H
is also a subgroup of K and M ; and J is also a subgroup of M .

Let H,K be subgroups of G. We leverage the Hasse Diagram to find H ∩K. Additionally, the Hasse Diagram
allows us to ascertain the join of H and K, denoted ⟨H,K⟩, which is the smallest possible subgroup containing
H and K. Note that the elements of H and K are multiplied together. So H ∪K is not necessarily the same
set as ⟨H,K⟩. In fact, H ∪K may not even form a group.

In order to find H ∩K, we find H and K in the Hasse Diagram. Then we enumerate all paths from 1 to H,
as well as all paths from 1 → K. We examine all subgroups M that lie on some 1 → H path and some 1 → K
path. The intersection H ∩K is the subgroup M closest to both H and K. Similarly, if we start at H and
K and enumerate the paths toG on the Hasse Diagram, the closest reachable subgroup fromH andK is ⟨H,K⟩.

Ultimately, we are seeking to leverage visual intuition. We consider Hasse diagrams for Z8. Observe that the
cyclic subgroups generated by 2 and 4 are isomorphic to Z4 and Z2 respectively. Here, the trivial subgroup
{0} is at the bottom of the lattice diagram and is contained in each of the succeeding subgroups. We then see
that ⟨4⟩ ≤ ⟨2⟩, and in turn that each of these are subgroups of Z8. If we consider the sublattice from {0} to
⟨2⟩, then we have the lattice for Z4.

Example 114.

Z8 = ⟨1⟩

⟨2⟩ ∼= Z4

⟨4⟩ ∼= Z2

⟨8⟩ = {0}

In particular, if p is prime, we see the lattice diagram of Zpn is:

Example 115.

Zpn = ⟨1⟩

⟨p⟩

⟨p2⟩

⟨p3⟩

...

⟨pn−1⟩

{0}

67

We now examine the Hasse diagrams of Z6 and Z12. Observe that in the lattice diagram of Z12, we have
⟨2⟩ ∼= Z6. Similarly, ⟨4⟩ in the lattice of Z12 corresponds to ⟨2⟩ in the lattice of Z6. Following this pattern, we
observe that the lattice of Z6 can be extracted from the lattice of Z12.

Example 116.

The next group we examine is the Klein group of order 4 (Viergruppe), which is denoted V4. Formally,
V4

∼= Z2 × Z2. So there are three subgroups of order 2 and the trivial subgroup as the precise subgroups of
V4. This yields the following lattice.

Example 117.

V4

⟨(1, 0)⟩ ⟨(0, 1)⟩ ⟨(1, 1)⟩

{(0, 0)}

In fact, the two distinct groups of order 4 are Z4 and V4. It is easy to see that V4 ̸∼= Z4 by examining their
lattices. It is not true in general that two groups with the same lattice structure are isomorphic. We will also
see that V4 is isomorphic to a subgroup of D8, and we will leverage the lattice of D8 to obtain this result.

We now construct the lattice of D8. Recall that Lagrange’s Theorem states that if G is a finite group and
H ≤ G, then |H| divides |G|. In Zn, we see that if q divides n, then Zq ≤ Zn. In general, the converse of
Lagrange’s Theorem is not true. Furthermore, there could be many subgroups of a given order. In D8, we
have subgroups of order 1, 2, and 4. We begin by enumerating the subgroups of order 2, then taking their joins
to obtain all but one of the subgroups of order 4. The remaining subgroup of order four is ⟨r⟩, which only has
⟨r2⟩ as an order 2 subgroup. Then the subgroups of order 4 all have directed edges to D8 in the lattice. Recall
that each reflection, which is of the form sri for i ∈ {0, . . . , 3}, has order 2. Similarly, r2 has order 2 as well.
This yields the five subgroups of order 2 which are adjacent to {1}, the trivial subgroup.

68

It should be readily apparent that the three subgroups of order 4 specified in the lattice of D8 below exist.
What may not be as obvious is that these are precisely the three subgroups of order 4. There are precisely
two distinct groups of order 4: Z4 and V4. It is clear that ⟨r⟩ ∼= Z4. Now V4 has three subgroups of order
2. We may check by exhaustion the joins of all

(
5
3

)
= 10 sets of three subgroups of order 2. The join of

any three subgroups of order two which allows us to isolate r or r3 results in a generating set for D8. For
example, ⟨r2s, r2, rs⟩ allows us to isolate r by multiplying r2s · rs = r2ssr3 = r. So ⟨r⟩ ≤ ⟨r2s, r2, rs⟩. Thus,
⟨r2s, r2, rs⟩ = D8.

Example 118.

The Hasse diagram, when combined with Lagrange’s Theorem, provides a powerful tool to compute the center,
normalizers, and centralizers for a given group. As each of these sets are subgroups of G, they are each vertices
on the Hasse diagram. So finding a known subgroup of the center, centralizer, or normalizer, we can narrow
down candidates rather quickly. We consider an example.

Example 119. We seek to compute CD8(s). Recall that ⟨s⟩ ≤ CD8(s). Examining the lattice of D8, our
candidates for CD8(s) are ⟨s, r2⟩ and D8. We see that r2⟨s⟩r2 = ⟨s⟩. However, rs ̸= sr, so CD8(s) ̸= D8.

3.3 Quotient Groups

3.3.1 Introduction to Quotients

Recall in the exposition in the preliminaries that an equivalence relation partitions a set. We refer to this par-
titioning as a quotient, denoted S/ ≡, where S is the set and ≡ is the equivalence relation. We pronounce S/ ≡
as S modulo ≡. Quotients appear throughout mathematics and theoretical computer science. In automata
theory, we study quotient machines and quotient languages, with elegant results such as the Myhill-Nerode
Theorem characterizing regular languages using quotients. The Myhill-Nerode theorem also provides an ele-
gant algorithm to compute the quotient and yield a minimum DFA. Section 2.9 of these notes introduces the
Myhill-Nerode theorem.

Quotients arise frequently in the study of algebra. In group theory, we study quotients of groups and the
conditions upon which the quotient of two groups forms a group itself. In ring theory, we are interested in col-
lapsing the structure to form a field. In fact, we take the ring R[x] of polynomials with real-valued coefficients
and collapse these polynomials modulo x2+1 to obtain a field isomorphic to C. Similar constructions produce
finite fields of interest in cryptography, such as the Rijndael field used in the AES-Cryptosystem.

In standard algebra texts, the study of group quotients is really restricted to the case when such quotients
form a group. Formally, the elements of a group G are partitioned into equivalence classes called cosets. In
order to partition one group G according to another group H, we use the orbit relation when H acts on G.
This yields some interesting combinatorial results, as well as algebraic results in the study of quotient groups.

69

In particular G/H forms a group when H is a normal subgroup of G. This means that H is the kernel of some
group homomorphism with G in the domain. These ideas culminate to develop the notion of division, which
intuitively speaking comes down to placing an equal number of cookies on each plate.

We begin by computing a couple quotients to illustrate the point. Using quotients of groups, we deduce that
P (n, r) = n!

(n−r)! is the correct formula for counting r-letter permutations from an n-letter set; and
(
n
k

)
= n!

r!(n−r)!
counts the number of k-element subsets from an n-element set. Recall that Sn is the group of all permutations,
with order n!. In the mathematical preliminaries section, we considered equivalence classes of permutations in
Sn according to whether the “first” r characters were the same. Intuitively, only the last r characters matter
in a given permutation. Formally, P (n, r) = |Sn/Sn−r|. The equivalence classes are formalized by letting Sn−r

act on Sn by postcomposition. So let π ∈ Sn and τ ∈ Sn−r. Then τ sends π 7→ τ ◦ π. So the action of Sn−r on
Sn partitions Sn into orbits each of order (n− r)!. So we have P (n, r) = n!

(n−r)! orbits.

Example 120. Consider S5/S3. We compute the orbit of (13254). We see:

� (1)(13254) = (13254). Combinatorially, this permutation corresponds to the string 43152.

� (12)(13254) = (13)(254). Combinatorially, this permutation corresponds to the string 34152.

� (13)(13254) = (3254). Combinatorially, this permutation corresponds to the string 13452.

� (23)(13254) = (1254). Combinatorially, this permutation corresponds to the string 41352.

� (123)(13254) = (254). Combinatorially, this permutation corresponds to the string 14352.

� (132)(13254) = (12543). Combinatorially, this permutation corresponds to the string 31452.

So O((13254)) = {(13254), (13)(254), (3254), (1254), (254), (12543)}.

By similar argument, we let Sr act on the orbits of Sn/Sn−r by postcomposition, which permutes the “last” r
digits of the string. We note that the permutations in Sr are labeled using the set [r], while the permutations
of Sn−r are labeled using the digits {r + 1, . . . , n}. So the action of Sr on Sn/Sn−r does not interfere with
the action of Sn−r on Sn. Formally, the action of Sr on Sn/Sn−r partitions the n!

(n−r)! orbits of Sn/Sn−r into

equivalence classes each of order r!. Intuitively, we are combining orbits of Sn/Sn−r. So there are n!
r!(n−r)! =

(
n
r

)
subsets of order r from an n-element set.

Example 121. Recall the example of S5/S3 above. We let S2 act on S5/S3. So the following permutations
belong to the same orbit:

{(13254), (13)(254), (3254), (1254), (254), (12543), (1324), (13)(24), (324), (124), (24), (1243)}.

So while the string (13254) corresponds to the string 43152, the permutation (1324) corresponds to the string
43125. So the action of S2 on the orbits of S5/S3 permutes the last two digits of a given string.

3.3.2 Normal Subgroups and Quotient Groups

We transition from talking about quotients of sets modulo equivalence relations to developing some intuition
about quotient groups, where G/H forms a group. Intuitively, the study of quotient groups is closely tied to
the study of homomorphisms. Recall a group homomorphism is a function ϕ : G → K where G and K are
groups. Let H := ker(ϕ). Let a, b ∈ K. Intuitively, in a quotient group, we consider ϕ−1(a) equivocal to a
and ϕ−1(b) equivocal to b. That is, ϕ−1(a) behaves in G/H just as a behaves in K. That is, the operation
of K provides a natural multiplication operation in G/H where multiply orbits by selecting a representative
of each orbit, multiplying the representatives and taking the resultant orbit. Using this intuition, we see that
G/H ∼= ϕ(G), which indicates that in the action of H on G, the orbits of this action can be treated equivalently
as the range of ϕ. This result is known as the First Isomorphism Theorem, which we will formally prove. Each
orbit corresponds to some non-empty preimage of an element in K. It is common in the study of quotients for
the orbits or cosets to be referred to as fibers. That is, ϕ−1(a) is the fiber above a ∈ K.

Now consider a group G acting on a set A. In general, the orbits are not invariant when G acts by left
multiplication on A vs. right multiplication. In quotient groups, it does not matter if the action is left
multiplication or right multiplication. We formalize this as follows.

70

Proposition 3.14. Let ϕ : G→ H be a group homomorphism with kernel K. Let X ∈ G/K be the fiber above
a; that is, X = ϕ−1(a). Then for any u ∈ X, we have X = {uk : k ∈ K} = {ku : k ∈ K}.

Proof. Let u ∈ X. Define uK = {uk : k ∈ K} and Ku = {ku : k ∈ K}. We show uK ⊂ X first. Let
uk ∈ uK. Then ϕ(uk) = ϕ(u)ϕ(k) as ϕ is a homomorphism. As k ∈ K, ϕ(k) = 1H . So ϕ(u)ϕ(k) = ϕ(u) = a.
So uK ⊂ X. We now show that X ⊂ uK. Let g ∈ X and let k = u−1g. Observe that k ∈ K, as
ϕ(k) = ϕ(u−1)ϕ(g) = a−1 · a = 1H . So we have g = uk ∈ uK. So ϕ(g) = a and g ∈ X. So X = uK.

By similar argument, we deduce that X = Ku. The details are left to the reader.

Remark: As the orbit relation is an equivalence relation, each equivalence class can be described by selecting
an arbitrary representative. For any N ≤ G, gN = {gn : n ∈ N} and Ng = {ng : n ∈ N}. We refer to gN
as the left coset and Ng as the right coset. If G is an Abelian group, then we write gN as g +N ; and Ng as
N + g. By Proposition 3.14, if N is the kernel of some homomorphism, we have that gN = Ng.

The first big result in the study of quotient groups is the First Isomorphism Theorem, which we mentioned
above. The important result is that G/ker(ϕ) ∼= ϕ(G) for a group homomorphism ϕ : G → H. It is easy to
verify that ϕ(G) ≤ H using the subgroup criterion- an exercise left for the reader. Showing that G/ker(ϕ) forms
a group takes some work. Constructing an isomorphism from G/ker(ϕ) to ϕ(G) is relatively straight-forward.
The desired isomorphism is straight-forward to construct: we map a cost aG 7→ ϕ(a). Note that when we
deal with functions on cosets, we must show that the desired function is well-defined. That is, the function is
determined for all inputs, and that all members of an equivalence class behave in the expected manner. If a
and b belong to the same coset, then it is necessary for a well-defined function f that f(a) = f(b).

We begin by showing G/ker(ϕ) forms a group. We have already discussed the importance of having a well-
defined operation. The second part of this proof shows that the desired operation satisfies the group axioms.
A good strategy when dealing with quotient groups is to take elements from the quotient group, work in the
parent group, apply the homomorphism, then project back into the quotient group. This is precisely what we
do below. Furthermore, we note that the desired isomorphism (sending X = ϕ−1(a) ∈ G/K to a ∈ ϕ(G)) to
prove the First Isomorphism Theorem follows is contained (though not explicitly mentioned) in the proof of
this next result.

Theorem 3.16. Let ϕ : G → H be a group homomorphism with kernel K. Then the operation on G/K
sending aK · bK = (ab)K is well-defined.

Proof. Let X,Y ∈ G/K and let Z = XY ∈ G/K. Suppose X = ϕ−1(a) and Y = ϕ−1(b) for some a, b ∈ ϕ(G).
Then by the definition of the operation, Z = ϕ−1(ab). Let u ∈ X, v ∈ Y be representatives of X and Y
respectively. It suffices to show uv ∈ Z. We apply the homomorphism ϕ to obtain the that:

ϕ(uv) = ϕ(u)ϕ(v)

= ab.

Thus, uv ∈ Z, so Z = abK. So the operation is well-defined.

We now have most of the machinery we need to prove the First Isomorphism Theorem. We want a couple more
results first, though, to provide more intuition about the structure of a quotient group. First, we show that the
cosets or orbits of an action form a partition of the group. Then we formalize the notion of a normal subgroup.
The machinery we build up makes the proof of the First Isomorphism Theorem rather trivial. Remember
that our goal is to show that the cosets of G/K behave the same way as the elements of ϕ(G), for a group
homomorphism ϕ : G→ H.

Proposition 3.15. Let G be a group, and let N ≤ G. The set of left cosets in G/N forms a partition of G.
Furthermore, for any u, v ∈ G, uN = vN if and only if v−1u ∈ N . In particular, uN = vN if and only if u, v
are representatives of the same coset.

Proof. As N ≤ G, 1 ∈ N . So for all g ∈ G, g · 1 ∈ gN . It follows that:

G =
⋃
g∈G

gN.

71

We now show that any two distinct left-cosets are disjoint. Let uN, vN ∈ G/N be distinct cosets. Suppose to
the contrary that uN ∩ vN ̸= ∅. Let x = un = vm ∈ uN ∩ vN , with m,n ∈ N . As N is a group, mn−1 ∈ N .
So for any t ∈ N , ut = vmn−1t = v(mn−1t) ∈ vN . So u ∈ vN and uN ⊂ vN . Interchanging the roles of u and
v, we obtain that vN ⊂ uN and we have uN = vN . It follows that uN = vN if and only if uv−1 ∈ N if and
only if u, v are representatives of the same coset.

Remark: In particular, Proposition 3.15 verifies that the action of N on G by right multiplication (the left-
coset relation) forms an equivalence relation on G.

We now introduce the notion of a normal subgroup.

Definition 102 (Normal Subgroup). Let G be a group, and let N ≤ G. We refer to gng−1 as the conjugate
of n by g. The set gNg−1 = {gng−1 : n ∈ N} is referred to as the conjugate of N by g. The element of g ∈ G
is said to normalize N if gNg−1 = N . N is said to be a normal subgroup in G if gNg−1 = N for all g ∈ G.
We denote N to be a normal subgroup of G as N ⊴ G.

Intuitively, it is easy to see why a normal subgroup N is the kernel of some homomorphism ϕ. We let G act
on N by conjugation. Then for any g ∈ G and n ∈ N , we consider gng−1 and apply ϕ. As n ∈ N = ker(ϕ),
we have ϕ(gng−1) = ϕ(g)ϕ(n)ϕ(g−1) = ϕ(g)ϕ(g−1) = 1. We next explore several characterizations of a normal
subgroup.

Proposition 3.16. Let G be a group, and let N ≤ G. We have the following conditions:

1. The operation on the left cosets sending uN · vN = (uv)N is well-defined if and only if gNg−1 ⊂ N for
all g ∈ G.

2. If the above operation is well-defined, then it makes the set of left-cosets of G/N into a group. The
identity of this group is the coset N , and the inverse of gN is g−1N .

Proof. We prove statement (1) first. Suppose the operation is well-defined on G/N . We observe that
g−1N = (nN · g−1N) = (ng−1)N for any g ∈ G and n ∈ N . Clearly, ng−1 ∈ (ng−1)N . As g−1N = (ng−1)N ,
we have that g−1n1 = ng−1 for some n1 ∈ N . Thus, n1 = gng−1. As our choice of g and n were arbitrary, we
deduce that gNg−1 ⊂ N for all g ∈ G.

Conversely, suppose gNg−1 ⊂ N for all g ∈ G. Let u, u1 ∈ uN and v, v1 ∈ vN . We write u1 = un and
v1 = vm for some m,n ∈ N . It suffices to show u1v1 ∈ (uv)N . Observe that u1v1 = unvm = u(vv−1)nvm.
By associativity, we rewrite uv(v−1nv)m. As gNg−1 ⊂ N for all g, we have v−1nv = n1 for some n1 ∈ N . So
(uv)(v−1nv)m = (uv)(n1m). As N ≤ G, n1m ∈ N . So u1v1 ∈ (uv)N , completing the proof of (1).

We now prove statement (2). Suppose the operation on G/N sending uN ·vN = (uv)N is well-defined. We show
G/N forms a group. Let uN, vN,wN ∈ G/N . Then (uN · vN) · wN = uvN · wN = uvwN = uN · (vwN) =
uN · (vN ·wN). So G/N is associative. Let g ∈ G. Observe that 1N = N ; and so, 1N · gN = 1gN = gN ; and
gN · 1N = g1N = gN . So N is the identity. Now observe that gN · g−1N = gg−1N = N . So (gN)−1 = g−1N .
Thus, G/N forms a group.

We next show that normal subgroups are precisely the kernels of group homomorphisms.

Proposition 3.17. Let G be a group, and let N ≤ G. We have N ⊴ G if and only if there exists a group H
and group homomorphism ϕ : G→ H for which N is the kernel.

Proof. Suppose firstN is the kernel of ϕ. Let G act onN by conjugation. Then ϕ(gNg−1) = ϕ(g)ϕ(N)ϕ(g−1) =
ϕ(g)ϕ(g−1) = 1H . So gNg−1 ⊂ N . We now show that gNg−1 = N . Let g ∈ G. The map σg : N → N sending
n 7→ gng−1 is an injection, as gn1g

−1 = gn2g
−1 =⇒ n1 = n2 by cancellation of the g and g−1 terms.

Furthermore, the map gn−1g−1 is a two-sided inverse of gng−1, so gNg−1 = N , and we have N ⊴ G.

Conversely, suppose N ⊴ G. We construct a group homomorphism π for which N is the kernel. By Proposition
3.16, G/N forms a group under the operation sending uN · vN = (uv)N . We define the map π : G → G/N
sending g 7→ gN . Now let g, h ∈ G. So π(gh) = (gh)N . By the operation inG/N , (gh)N = gN ·hN = π(g)π(h).
So π is a homomorphism. We have ker(π) = {g ∈ G : π(g) = 1N} = {g ∈ G : gN = 1N}. As 1N = N ,
ker(π) = {g ∈ G : gN = N} = N .

72

We summarize our characterizations of normal subgroups with the next theorem. We have proven most of
these equivalences above. The rest are left as exercises for the reader.

Theorem 3.17. Let G be a group, and let N ≤ G. The following are equivalent.

1. N ⊴ G.

2. NG(N) = G.

3. gN = Ng for all g ∈ G.

4. The operation on the left cosets described in Theorem 3.16 forms a group.

5. gNg−1 ⊂ N for all g ∈ G.

6. N is the kernel of some group homomorphism ϕ : G→ H.

We conclude with the First Isomorphism Theorem.

Theorem 3.18 (First Isomorphism Theorem). Let ϕ : G → H be a group homomorphism. Then ker(ϕ) ⊴ G
and G/ker(ϕ) ∼= ϕ(G).

Proof. By Proposition 3.17, we have ker(ϕ) ⊴ G. Let N := ker(ϕ). By Proposition 3.16, G/N forms a group.
We construct an isomorphism π : G/N → ϕ(G) sending gN 7→ ϕ(g). We first show this map is well-defined.
Let g, h ∈ gN . As gN = ϕ−1(a) for some a ∈ H, we have ϕ(gN) = ϕ(g)ϕ(N) = a, as ϕ(g) = a and ϕ(N) = 1.
By similar argument, ϕ(hN) = a. So π is well-defined.

We now show π is an isomorphism. As G/N = {ϕ−1(a) : a ∈ ϕ(G)}, π is surjective. Now suppose π(gN) =
π(hN) = a. Then gN = hN = ϕ−1(a) and π is injective. Finally, consider π(gN · hN) = ϕ(gN · hN). As ϕ is
a homomorphism, ϕ(gN · hN) = ϕ(gN)ϕ(hN) = π(gN) · π(hN). So π is a homomorphism. Therefore, π is an
isomorphism.

3.3.3 More on Cosets and Lagrange’s Theorem

In this section, we explore some applications of Lagrange’s Theorem. In particular, we are able to quickly
determine the number of cosets in a quotient, when it is finite. We then examine more subtle results concerning
quotients of groups G/H where H is not normal in G. We recall the statement of Lagrange’s Theorem below.

Theorem 3.19 (Lagrange’s Theorem). Let G be a finite group, and let H ≤ G. Then |H| divides |G|.

Recall the proof of Lagrange’s Theorem (Theorem 3.9). Intuitively, the proof is analogous to the necklace
counting proof of Fermat’s Little Theorem. We let H act on G by left multiplication, which partitions the

elements of G into orbits of order |H|. So |H| divides |G|, and we have
|G|
|H|

orbits in G/H. In fact, Lagrange’s

Theorem implies Fermat’s Little Theorem, providing a second proof of Fermat’s Little Theorem.

Theorem 3.20 (Fermat’s Little Theorem). Let p be prime and let a ∈ [p− 1]. Then ap−1 ≡ 1 (mod p).

Proof. There are p − 1 elements in the multiplicative group Z×
p . By Lagrange’s Theorem, |a| = |⟨a⟩| divides

p− 1 for every a ∈ Z×
p . Let |a| = q, and p− 1 = kq. Then |a|p−1 = |aq|k = 1

k
= 1. So ap−1 ≡ 1 (mod p).

Remark: More generally, in Zn where n is not necessarily prime, |Z×
n | = ϕ(n), where ϕ is Euler’s totient

function. Note that ϕ(n) = |{a : a ∈ [n− 1], gcd(a, n) = 1}|. The Euler-Fermat Theorem states that aϕ(n) ≡ 1
(mod n). So the Euler-Fermat Theorem generalizes and implies Fermat’s Little Theorem. The proof is identi-
cal to Fermat’s Little Theorem, substituting p− 1 for ϕ(n). Note that if for any prime p, ϕ(p) = p− 1.

We introduce formal notion for the order of a quotient of groups G/H. Note that we do not assume G/H
forms a group.

73

Definition 103 (Index). Let G be a group, and let H ≤ G. The index of H in G, denoted [G : H] is the

number of left cosets in G/H. If G and H are finite, [G : H] =
|G|
|H|

. If G is infinite, then
|G|
|H|

does not

make sense. However, an infinite group may have a subgroup of finite index. For example, [Z : {0}] = ∞ but
[Z : ⟨n⟩] = n for every integer n > 0.

We now derive a couple easy consequences of Lagrange’s Theorem.

Proposition 3.18. Let G be a finite group, and let x ∈ G. Then |x| divides |G|. Furthermore, x|G| = 1 for
all x ∈ G.

Proof. Recall that |x| = |⟨x⟩|. So by Lagrange’s Theorem, |x| divides |G|. Let |x| = k and |G| = kq, for some
integer q. Then x|G| = (|x|k)q = 1q = 1.

Proposition 3.19. If G is a group of prime order p, then G ∼= Zp.

Proof. Let H ≤ G. By Lagrange’s Theorem, |H| = 1 or |H| = p. As the identity is the unique element of
order 1 and p > 1, there exists an element x of order p in G. So G = ⟨x⟩ ∼= Zp.

The converse of Lagrange’s Theorem states that if G is a finite group and k divides |G|, then G contains a
subgroup of order k. In general, the full converse of Lagrange’s Theorem does not hold. Consider the following
example.

Definition 104 (Alternating Group). Let X be a finite set. Denote Alt(X) as the group of permutations of
X with even order. In particular, Alt(n) ≤ Sym(n).

Example 122. The elements of Alt(4) are as follows:

Alt(4) = {(1), (12)(34), (13)(24), (14)(23), (123), (132),
(143), (134), (124), (142), (243), (234)}.

Observe that while |Alt(4)| = 12, Alt(4) has no subgroup of order 6.

We next discuss Cauchy’s Theorem, which provides a nice partial converse for Lagrange’s Theorem: for every
prime divisor p of |G|, where G is a finite group, there exists a subgroup of order p in G. Algebra texts
introduce Cauchy’s Theorem and prove it by induction for Abelian groups. This restricted case is then used
to prove the Sylow theorems, which allow us to leverage combinatorial techniques to study the structure of
finite groups. The Sylow theorems are then used to prove Cauchy’s Theorem in its full generality. We offer an
alternative and far more elegant proof of Cauchy’s Theorem, which is accredited to James H. McKay. In his
proof, McKay uses group actions and combinatorial techniques to prove Cauchy’s Theorem, which resembles
the necklace-counting (group action) proof of Fermat’s Little Theorem we offered in these notes as well as the
proof of Lagrange’s Theorem.

Theorem 3.21 (Cauchy’s Theorem). Let G be a finite group, and let p be a prime divisor of |G|. Then G
contains a subgroup of order p.

Proof. Let:

G =

{
(x1, . . . , xp) ∈ Gp :

p∏
i=1

xi = 1

}
.

The first p− 1 elements of any tuple in G may be chosen freely from G. This fixes:

xp =

(
p−1∏
i=1

xi

)−1

.

By rule of product, |G| = |G|p−1. As
∏j

i=1 xi and
∏p

i=j+1 xi are inverses for any j ∈ [p], G is closed under cyclic
rotations. Let Zp

∼= ⟨(1, 2, . . . , p)⟩ act on G by cyclic rotation. Each orbit has order 1 or order p, as p is prime.
Let k denote the number of orbits of order 1, and let d denote the number of orbits of order p. We have:

|G| = |G|p−1 = k + pd.

As p divides |G|, p also divides |G|p−1. Clearly, p divides pd, so p must divide k. The tuple consisting of all
1’s is in G, so k > 0. As k > 0, p > 1, and since p divides k, there must exist a tuple in G consisting of all x
terms for some x ∈ G with x ̸= 1. So xp = 1 and we have a subgroup of order p in G.

74

Remark: The necklace counting proof of Cauchy’s Theorem actually provides that there are at least p − 1
elements x ∈ G with x ̸= 1 satisfying xp = 1.

We conclude by examining another method for constructing subgroups: the concatenation of two subgroups.
Recall that we can form subgroups by taking joins, intersections, and under certain conditions quotients of
groups. Recall that the concatenation of two sets H and K is the set HK = {hk : h ∈ H, k ∈ K}. When H
and K are subgroups of a group G, we evaluate each hk term using the group operation of G and retain the
distinct elements. The question arises of when HK ≤ G. This occurs precisely when HK = KH. So it suffices
that either H ⊴ G or K ⊴ G. However, we can relax this condition. It really suffices that H ≤ NG(K). We
begin by determining |HK| in the finite case, using a bijective argument. When HK/K and H/(H ∩K) form
groups, the bijection we construct.

Proposition 3.20. Let G be a group, and let H,K ≤ G be finite. Then: |HK| = |H| · |K|
|H ∩K|

.

Proof. We define f : H ×K → HK sending f(h, k) = hk. Clearly, |H ×K| = |H| · |K|. So it suffices to show
there exist exactly H ∩K preimages.

Observe that f is surjective, so f−1(hk) ̸= ∅ for all hk ∈ HK. Let S = {f−1(hk) : hk ∈ HK}. As f is
surjective, |S| = |HK|. We define a map ϕ : S → H/(H ∩ K) sending f−1(hk) 7→ h(H ∩ K). It suffices to
show ϕ is a bijection. Clearly, ϕ is surjective. We now show that ϕ is injective. Suppose f−1(hk) ̸= f−1(h1k1).
Then for every g ∈ H ∩K, h ̸= h1g. So h(H ∩K) ̸= h1(H ∩K), and ϕ is injective. So ϕ is a bijection and the
result follows.

We offer a second proof of Proposition 3.20 using group actions. This proof relies on the Orbit-Stabilizer
Theorem, which we state here. The proof of the Orbit-Stabilizer Theorem is deferred to a later section.

Theorem 3.22 (Orbit-Stabilizer Lemma). Let G be a group acting on the set A. Then |Stab(a)| · |O(a)| = |G|,
where Stab(a) is the stablizer of a and O(a) is the orbit of a.

Proof of Proposition 3.20. We let H ×K act on the set HK ⊂ G, where for (h, k) ∈ H ×K and x ∈ HK:

(h, k) · x 7→ hxk−1.

We show that this action is transitive. As H,K ≤ G, 1 ∈ HK. So for h ∈ H and k ∈ K,

(h, k−1) · 1 7→ h1k = hk.

So H ×K acts transitively on HK. That is, O(1) = HK. We now determine Stab(1). We have that:

Stab(1) = {(h, k) ∈ H ×K|h1k−1 = 1}
= {(h, k) ∈ H ×K|h1 = k}
= {(h, k) ∈ H ×K|h = k}
= {(h, h) ∈ H ×K}.

In particular, observe that if (h, k) ∈ Stab(1), then h, k ∈ H ∩K. We establish an isomorphism φ : Stab(1) →
H ∩K. Let φ((h, h) = h ∈ H ×K. This is clearly a surjective map with ker(φ) = {1}. It remains to show
that φ is a group homomorphism. Take (h, h), (k, k) ∈ Stab(1). Now:

φ

(
(h, h) · (k, k)

)
= φ((hk, hk))

= hk

= φ((h, h)) · φ((k, k)).

So Stab(1) ∼= H ×K. By the Orbit-Stabilizer Theorem, we have that:

|H ×K| = |HK| · |H ∩K|.

The result follows.

75

Remark: Let G = S3, H = ⟨(1, 2)⟩, and K = ⟨(1, 3)⟩. Then |H| = |K| = 2 and |H ∩K| = 1. However, by
Lagrange’s Theorem, HK ̸≤ G as |HK| = 4, which does not divide |S3| = 6. It follows that S3 = ⟨(1, 2), (1, 3)⟩.
Observe as well that when HK ≤ G, f is a homomorphism with kernel H ∩ K. In this case, the First Iso-
morphism Theorem implies the desired result. The bijective proof presented here provides only the desired
combinatorial result.

We now examine conditions in which HK ≤ G. Observe that:

HK =
⋃
h∈H

hK.

In order for a set of cosets to form a group, it is sufficient and necessary that hK = Kh for all h ∈ H. So
it stands to reason that HK = KH needs to hold. Another way to see this is that if hk ∈ HK, we need
(hk)−1 = k−1h−1 ∈ HK as well. Observe that k−1h−1 ∈ KH. So if HK = KH, then k−1h−1 ∈ HK and we
have closure under inverses. We formalize this result below.

Proposition 3.21. Let G be a group, and let H,K ≤ G. We have HK ≤ G if and only if HK = KH.

Proof. Suppose first HK = KH. We show HK ≤ G. As H,K ≤ G, we have 1 ∈ HK. So HK ̸= ∅. Now let
a, b ∈ HK where a = h1k1 and b = h2k2, h1, h2 ∈ H and k1, k2 ∈ K. As HK = KH, k2h2 ∈ HK. As H and
K are groups, k−1

2 h−1
2 ∈ HK. In order for ab−1 ∈ HK, we need h1k1k

−1
2 h−1

2 ∈ HK. As HK = KH, there
exist k3 ∈ K and h3 ∈ H such that h3k3 = k1k

−1
2 h2. So h1k1k

−1
2 h−1

2 = h1h3k3 ∈ HK and HK ≤ G.

Conversely, suppose HK ≤ G. As H and K are subgroups of HK, we have KH ⊂ HK. In order to show
HK ⊂ KH, it suffices to show that for every hk ∈ HK, (hk)−1 ∈ KH (as groups are closed under inverses).
Let hk ∈ HK. As HK is a group, (hk)−1 = k−1h−1 ∈ HK. By definition of KH, we also have that
k−1h−1 ∈ KH. So HK ⊂ KH, and we conclude that HK = KH.

Remark: Note that HK = KH does not imply that the elements of HK commute. Rather, for every
hk ∈ HK, there exists a k′h′ ∈ KH such that hk = k′h′. For example, let H = ⟨r⟩ and K = ⟨s⟩. Then
D2n = HK = KH, but sr = rs−1.

We have a nice corollary to Proposition 3.21.

Corollary 3.21.1. If H and K are subgroups of G and H ≤ NG(K), then HK ≤ G. In particular, if K ⊴ G,
then HK ≤ G for all H ≤ G.

Proof. By Proposition 3.21, it suffices to show HK = KH. Let h ∈ H, k ∈ K. As H ≤ NG(K), hkh−1 ∈ K.
It follows that hk = (hkh−1)h ∈ KH. So HK ⊂ KH. By similar argument, kh = h(h−1kh) ∈ HK, which
implies KH ⊂ HK. So HK = KH. It follows that HK ≤ G.

Note that if K ⊴ G, then NG(K) = G. So any H ≤ G satisfies H ≤ NG(K); and thus, HK ≤ G.

3.3.4 The Group Isomorphism Theorems

The group isomorphism theorems are elegant results relating a group G to a quotient group G/N . We have
already proven the first isomorphism theorem, which states that for a group homomorphism ϕ : G→ H, ker(ϕ)
partitions G into a quotient group isomrophic to ϕ(G). The second and fourth isomorphism theorems leverage
the poset of subgroups to ascertain the structure of quotients. Finally, the third isomorphism theorem provides
us with the “cancellation” of quotients like we would expect with fractions in Q or R. We have already proven
the First Isomorphism Theorem (Theorem 3.18), so we begin with the Second Isomorphism Theorem. The
bulk of the machinery to prove the Second Isomorphism Theorem was developed in the last section, so it is a
matter of putting the pieces together.

Theorem 3.23 (Second (Diamond) Isomorphism Theorem). Let G be a group, and let A,B ≤ G. Suppose
A ≤ NG(B). Then AB ≤ G, B ⊴ AB, A ∩B ⊴ A, and AB/B ∼= A/(A ∩B).

Proof. By Corollary 3.21.1, we have AB ≤ G. As A ≤ NG(B) by assumption and B ≤ NG(B), it follows that
AB ≤ NG(B). So B ⊴ AB. Thus, AB/B is a well-defined quotient group. We define the map ϕ : A→ AB/B
by sending ϕ(a) = aB. This map is clearly surjective. We have ϕ(uv) = uvB = uB · vB with the last equality

76

by the group operation of AB/B. So uB · vB = ϕ(u)ϕ(v), and ϕ is a homomorphism. The kernel of this
homomorphism is the set:

ker(ϕ) = {a ∈ A : ϕ(a) = B} = {a ∈ A : a ∈ B} = A ∩B.

So by the First Isomorphism Theorem, we have A ∩B ⊴ A, and A/(A ∩B) ∼= ϕ(A) = AB/B.

The Second Isomorphism Theorem is referred to the as the Diamond Isomorphism Theorem because of the
portion of the lattice involved. The marked edges on the lattice indicate the isomorphic quotients.

We now prove the Third Isomorphism Theorem, which considers quotients of quotient groups. Informally, the
cancellation property is shown to hold with groups. We also obtain that a quotient preserves normality.

Theorem 3.24 (Third Isomorphism Theorem). Let G be a group, and let H and K be normal subgroups of
G with H ≤ K. Then K/H ⊴ G/H and (G/H)/(K/H) ∼= G/K.

Proof. As H and K are normal in G, we have that G/H and G/K are well-defined quotient groups. We
construct a homomorphism ϕ : G/H → G/K sending ϕ(gH) = gK. We first show ϕ is well-defined.
Suppose g1H = g2H. Then there exists an h ∈ H such that g1 = g2h. As H ≤ K, h ∈ K. So
ϕ(g1H) = ϕ(g2H) = g1K = g2K.

We next argue that ϕ is surjective. Let gK ∈ G/K. We note that ϕ(gH) = gK. As g may be chosen arbitrarily,
ϕ is surjective. Now as ϕ is a projection, it is clearly a homomorphism. It remains to determine ker(ϕ). We
have that:

ker(ϕ) = {gH ∈ G/H : ϕ(gH) = K}
= {gH ∈ G/H : g ∈ K}
= K/H.

So by the First Isomorphism Theorem, K/H ⊴ G/H, and (G/H)/(K/H) ∼= G/K.

Remark: The Second and Third Isomorphism Theorems provide nice examples of leveraging the First Iso-
morphism Theorem. In general, when proving a subgroup H is normal in a parent group G, a good strategy is
to constructe a surjective homomorphism from G to some quotient group Q and deduce that H is the kernel
of said homomorphism. Projections are often good choices for these types of problems.

We conclude with the Fourth or Lattice Isomorphism Theorem, which relates the lattice of subgroups for the
quotient group G/N to the lattice of subgroups of G. Intuitively, taking the quotient G/N preserves the lattice
of G, restricting to N as the identity element. This is formalized as follows. The lattice of subgroups of G/N
can be constructed from the lattice of subgroups of G, by collapsing the group N to the trivial subgroup and
G/N appears at the top of its lattice. In particular, there exists a bijection between the subgroups of G con-
taining N and the subgroups of G/N . We will prove the Fourth Isomorphism Theorem. The general strategy
in proving each of these parts is to apply a “lifting” technique, in which we study the quotient structure by
taking (under the natural projection homomorphism) the preimages or orbits in G, operating on them, then
projecting back down to the quotient. Alternatively, we also study the quotient then lift back to the parent
group to study the structure of the original group.

77

Theorem 3.25 (The Fourth (Lattice) Isomorphism Theorem). Let G be a group, and let N ⊴ G. Then there
is a bijection from the set of subgroups A of G containing N onto the set of subgroups A = A/N of G/N . In
particular, every subgroup of G = G/N is of the form A/N for some subgroup A of G containing N (i.e., its
preimage in G under the natural projection homomorphism from G to G/N). This bijection has the following
properties for all A,B ≤ G with N ≤ A and N ≤ B:

1. The quotient G/N preserves the subgroups of G. That is, A ≤ B if and only if A ≤ B.

2. The quotient preserves the index. That is, If A ≤ B, then [B : A] = [B : A].

3. ⟨A,B⟩ = ⟨A,B⟩.

4. A ∩B = A ∩B.

5. A ⊴ B if and only A ⊴ B.

Proof. Let A = {A ≤ G : N ≤ A} and A/N = {A/N ≤ G/N}. Let ϕ : A → A/N be defined sending
A 7→ A/N . As ϕ is a projection, ϕ is a homomorphism. Furthermore, ϕ is clearly surjective. We now show
that ϕ is injective. Suppose A1/N = A2/N . As the preimage of a subgroup in a homomorphism is a subgroup
of the domain, we have that A1 and A2 are subgroups of G containing N , and so A1 = A2 must hold. So ϕ is
injective. We now prove each of the conditions (1)-(5).

1. Suppose first A ≤ B. For each a ∈ A, we have ϕ(a) = aN . As a ∈ B, aN ∈ B. Since ϕ is a
homomorphism, we have ϕ(A) ≤ B. Conversely, suppose A ≤ B. We apply the subgroup criterion to
show A ≤ B. We clearly have 1N = N ∈ A, so 1 ∈ A∩B. Now let g, h ∈ A. Then h−1 ∈ A. So gh−1 ∈ A
and gh−1 ∈ A. As g, h ∈ B, it follows that gh−1 ∈ B as well. So A ≤ B.

2. Recall that [B : A] counts the number of left cosets in B. We map ψ : B/A → B/A by projection,
sending bA 7→ bA. We show ψ is well-defined. Suppose b1A = b2A. Then b−1

2 b1A = A, so ψ(b1A) =
ψ(b2A) = b1A. So ψ is well-defined. Clearly, ψ is surjective. So it suffices to show that ψ is injective.

Suppose ψ(b1A) = ψ(b2A). Then b1A = b2A, which occurs if and only if b−1
2 b1A = A. The preimage is

necessarily b−1
2 b1A = A (that is, b2A = b1A), so ψ is injective.

3. Let g =
∏k

i=1 xi ∈ ⟨A,B⟩. Then:

g =

(
k∏

i=1

xi

)
N =

k∏
i=1

xiN.

Thus, g ∈ ⟨A,B⟩. Conversely, let h =

j∏
i=1

xi ∈ ⟨A,B⟩. By construction of G/N , each xi = yini for some

yi ∈ ⟨A,B⟩ and ni ∈ N . So:

h =

j∏
i=1

yi ∈ ⟨A,B⟩

Thus, h ∈ ⟨A,B⟩ and ⟨A,B⟩ = ⟨A,B⟩.

4. Let h ∈ A ∩B, where ϕ(h) = h. So h ∈ A ∩ B, which implies that h ∈ A and h ∈ B. So h ∈ A and
h ∈ B. Conversely, let g ∈ A ∩ B. So g = kn for some k ∈ A ∩ B and n ∈ N . So g = k ∈ A ∩B. Thus,
A ∩B = A ∩B.

5. Suppose that A ⊴ B. Let a ∈ A and b ∈ B. We have bAb−1 = b · A · b−1 = A. So A ⊴ B. Conversely,
suppose A ⊴ B. Let τ : B → B/A be given by τ(g) = gA. We have ker(τ) = {b ∈ B : τ(b) = A}, which
is equivalent to bN = aN for some a ∈ A. As N ≤ A, there exists a ∈ A such that bN = aN if and only
if b ∈ A. So ker(τ) ⊂ A. Conversely, τ(A) ⊂ ker(τ). So ker(τ) = A and A ⊴ B.

78

Remark: While the quotient group preserves many properties of its parent, it does not preserve isomorphism.
Consider Q8/⟨−1⟩ ∼= D8/⟨r2⟩ ∼= V4. However, Q8 ̸∼= D8. We see in the lattices of Q8 and D8 below where the
sublattice of V4 is contained.

INCLUDE LATTICES

3.3.5 Alternating Group

In this section, we further discuss the altenrating group of degree n, dentoed Alt(n). Recall that the Alt(n)
consists of the even permutations of Sym(n). With the integers, there is a clear notion of even and odd. It is
necessary to define an analogous notion for permutations. There are two approaches to formulate the parity
of a permutation. The first formulation is to count the number of transpositions in the permutation’s decom-
position. In order to utilize this latter approach, it must first be shown that a permutation can be written
uniquely as the product of disjoint cycles. The permutatoin’s parity is then the product of the parity of each
cycle in its decomposition.

The second approach is to consider the action of Sym(n) on the following polynomial:

∆ =
∏

1≤i<j≤n

(xi − xj),

which permutes the indices of the variables. That is, for σ ∈ Sym(n), we have:

σ(∆) =
∏

1≤i<j≤
(xσ(i) − xσ(j)).

Example 123. Suppose n = 4. Then:

∆ = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

If σ = (1, 2, 3, 4), then:

σ(∆) = (x2 − x3)(x2 − x4)(x2 − x1)(x3 − x4)(x3 − x1)(x3 − x4).

Here, we wrote the factors of σ(∆) in the same order as σ. Observe that ∆ has the factor (xi − xj) for
every 1 ≤ i < j ≤ n. As σ is a bijection, σ(∆) has either the factor (xi − xj) or (xj − xi). Observe that
(xi − xj) = −(xj − xi). It follows that σ(∆) = ±∆ for every σ ∈ Sn. We define the parity homomorphism
ϵ : Sym(n) → {±1} as follows:

ϵ(σ) =

{
1 : σ(∆) = ∆,

−1 : σ(∆) = −∆.

We use ϵ to define the sign or parity of a permutation.

Definition 105 (Sign of a Permutation). The sign of the permutation σ is ϵ(σ). If ϵ(σ) = 1, then σ is said to
be even. Otherwise, σ is said to be odd.

In particular, ϵ is a homomorphism, which we easily verify below.

Proposition 3.22. The function ϵ defined above is a homomorphism, where {±1} ∼= Z2 using the operation
of multiplication for {±1}.

79

Proof. Let σ, τ ∈ Sym(n). By definition:

(τσ)(∆) =
∏

1≤i<j≤n

(xτσ(i) − xτσ(j)) = ϵ(τσ)∆

We now see that:

(τσ)(∆) = τ(σ(∆))

= τ(ϵ(σ)∆)

= ϵ(σ)τ(∆)

= ϵ(σ)ϵ(τ)∆.

where the first equality follows from the associativity of the group action. So ϵ is a homomorphism.

In particular, it follows that transpositions are odd permutations and ϵ is a surjective homomorphism. We now
define the Alternating group of degree n as follows.

Definition 106 (Alternating Group). Let n ∈ N, and consider ϵ : Sym(n) → {±1}, as defined above. The
Alternating group of degree n, denoted Alt(n) := ker(ϵ).

By Lagrange’s Theorem, |An| divides |Sn|. Furthermore, as ϵ is a homomorphism onto {±1}, we see that
[Sym(n) : Alt(n)] = 2. So |Alt(n)| = 1

2 |Sym(n)|. That is, there are as many even permutations as odd per-
mutations. We also see the map ψ : Sym(n) → Sym(n) sending σ 7→ σ · (12) is a bijection. As ϵ(12) = −1, ψ
maps even permutations to odd permutations, and odd permutations to even permutations. This provides a
bijective argument that there are just as many even permutations as odd permutations.

It is also easy to see why the Alternating group is the kernel of the parity homomorphism. Recall from
homework that every permutation can be written as the product of transpositions. We first recognize that
ϵ(σ) = ϵ(σ−1). Let σ =

∏k
i=1 si, where each si is a transposition. Then σ−1 =

∏k
i=1 sk−i+1. Intuitively, each

transposition in the decomposition of σ needs to be cancelled to obtain the identity. Let Sn act on itself by
conjugation. We consider ϵ(στσ−1) = ϵ(σ)ϵ(τ)ϵ(σ−1). As ϵ(σ) = ϵ(σ−1), we have ϵ(σ)ϵ(τ)ϵ(σ−1) = ϵ(τ) = 1 if
and only if τ is even and for all σ ∈ Sym(n).

We now seek to define the Alternating group in terms of the cycle decomposition. Recall that every permutation
has a cycle decomposition. In Section 3.1.3, an algorithm was presented to compute the cycle decomposition
of a permutation. This algorithm is formally justified using a group action. That is, we prove the cycle
decomposition from this algorithm is unique. In order to prove this result, we need a result known as the
Orbit-Stablizer Lemma which is also known as Burnside’s Lemma. The Orbit-Stabilizer Lemma is a powerful
tool in algebraic combinatorics, which is the foundation for Polyá Enumeration Theory.

Theorem 3.26 (Orbit-Stabilizer Lemma). Let G be a group acting on the set A. Then |Stab(a)| · |O(a)| = |G|,
where Stab(a) is the stablizer of a and O(a) is the orbit of a.

Proof. Recall that the orbits of a group action partition A (formally the equivalence relation on A is defined
as b ≡ a if and only if b = g · a for some g ∈ G). Fix a ∈ A. Recall that O(a) = {g · a : g ∈ G}. So
we map φ : O(a) → G/Stab(a) by sending g · a 7→ gStab(a). This map is clearly surjective. Now suppose
g · Stab(a) = h · Stab(a). Recall that g · a = h · a if and only if h−1g · a = a, which is equivalent to
h−1g ∈ Stab(a). So gStab(a) = hStab(a) if and only if h−1gStab(a) = Stab(a). So this map is injective. It
follows that |Stab(a)| · |O(a)| = |G|, as desired.

We now prove the existence and uniqueness of the cycle decomposition of a permutation.

Theorem 3.27. Every permutation σ ∈ Sym)n) can be written uniquely as the product of disjoint cycles.

Proof. Let σ ∈ Sym(n), and let G = ⟨σ⟩ act on [n]. Let x ∈ [n] and consider O(x). By the Orbit-Stabilizer
Lemma, the map σix 7→ σiStab(x) is a bijection. As G is cyclic, Stab(x) ⊴ G, so G/Stab(x) is a well-defined
quotient group. In particular, G/Stab(x) is cyclic, and d := |G/Stab(x)| is the least positive integer such that
σd ∈ Stab(x). By the Orbit-Stabilizer Lemma [G : Stab(x)] = |O(x)| = d. It follows that the distinct left-cosets
of G/Stab(x) are Stab(x), σStab(x), . . . , σd−1Stab(x), and O(x) = {x, σ(x), σ2(x), . . . , σd−1(x)}. We iterate on
this argument for each orbit to obtain a cycle decomposition for σ. The uniqueness of the cycle decomposition
for σ follows from our selection of σ and the fact that a permutation is a bijection.

80

Remark: Theorem 3.27 provides an algorithm for computing the cycle decomposition of a given permutation.
We can further decompose each disjoint cycle of σ into a product of transpositions, giving us a factorization of σ
in terms of transpositions. So by the Well-Ordering Principle, there exists a minimum number of transpositions
whose product forms σ. We then say a permutation σ is even (odd) if its minimum factorization in terms of
transpositions consists of an even (odd) number of 2-cycles. The Alternating group of degree n, Alt(n), can
then be defined as the group of even permutations.

3.3.6 Algebraic Graph Theory- Graph Homomorphisms

In this section, we explore some basic results on graph homomorphisms. Recall that a graph homomorphism.

Definition 107 (Graph Homomorphism). Let G and H be graphs. A graph homomorphism is a function
φ : V (G) → V (H) such that if ij ∈ E(G), then φ(i)φ(j) ∈ E(H). That is, a graph homomorphism preserves
the adjacency relation from G into H.

A well-known class of graph homomorphism is the class of graph colorings. A graph G is r-colorable if there
exists a homomorphism φ : V (G) → V (Kr). That is, the vertices of Kr are the r-colors of G. For r ≥ 3, it
is an NP-Complete problem to decide if a graph G is r-colorable. This is equivalent to deciding if there exists
a homomorphism ϕ : V (G) → Kr. So it is also NP-Complete to decide if there even exists a homomorphism
between graphs G and H.

The theory of graph homomorphisms has a similar flavor to the study of group homomorphisms. In a group
homomorphism, the operation is preserved in the image. So a product in the domain translates to a product
in the codomain. Graph homomorphisms similarly map walks in the domain to walks in the image. Much of
what we know about group homomorphisms holds true for graph homomorphisms. One example of this deals
with the composition of graph homomorphisms. Let g : V (H) → V (K) with h : V (G) → V (H) be graph
homomorphisms. Then g ◦ h : V (G) → V (K) is itself a graph homomorphism.

We now define the binary relation → on the set of finite graphs, where X → Y if there exists a homomorphism
ϕ : V (X) → V (Y). Clearly, → is reflexive, as X → X by the identity map. As the composition of two graph
homomorphisms is a graph homomorphism, we have that → is transitive. However, → fails to be a partial
order. Let X be a bipartite graph, and Y := K2. Then there exists a homomorphism from X to Y , mapping
one part of X to v1 ∈ Y and the other part of X to v2 ∈ Y . Similarly, if there is an edge in X, there exists
a homomorphism from Y to X mapping Y as some edge in X. However, any case when |X| > |2| results in
X ̸∼= Y . We need surjectivity of the homomorphisms from X → Y and Y → X to deduce that X ∼= Y . If
X → Y and Y → X, we say that X and Y are homomorphically equivalent.

Much in the same way that we study quotient groups, we study quotient graphs. Let f : V (X) → V (Y) be
a graph homomorphism. The preimages f−1(y) for each y ∈ Y are the fibers, which partition the graph X.
We refer to the partition as the kernel. In group theory, we refer to the kernel as the preimage of the identity
in the codomain. The kernel then acts on the domain, partitioning it into a quotient group isomorphic to
the image. In the graph theoretic setting, there is no identity element as there is no operation. So in a more
general setting, we view the kernel as an equivalence relation π on the vertices of X. We construct a quotient
graph X/π as follows. The fibers of π are the vertices of X/π. Then vertices u, v in X/π are adjacent if there
exist representatives a ∈ f−1(u), b ∈ f−1(v) such that ab ∈ E(X). Note that if X has loops, it may be the case
that u = v. There exists a natural homomorphism ϕ : V (X) → V (X/π) sending v 7→ f(v).

While deciding if there exists a homomorphism ϕ : V (X) → V (Y) is NP-Complete, we can leverage a couple
invariants to make our life easier. First, if the graph Y is r-colorable and there exists a homomorphism from
X to Y , then χ(X) ≤ χ(y) = r. This follows from the fact that for graph homomoprhisms g : V (Y) → Kr and
f : V (X) → V (Y), g ◦ f : V (X) → Kr is a graph homomorphism.

We prove a second invariant based on the odd girth, or length of the shortest odd cycle in a graph.

Proposition 3.23. Let X and Y be graphs, and let ℓ(X) be the odd girth in X. If there exists a graph
homomorphism f : V (X) → V (Y), then ℓ(Y) ≤ ℓ(X).

Proof. Let v0, v1, . . . , vℓ−1, v0 be the sequence of vertices in X that form a cycle of length ℓ, with v0 = vℓ.
Applying f , we obtain f(vi)f(vi+1) ∈ E(Y) for each i ∈ {0, . . . , ℓ − 1} with the indices taken modulo ℓ. So

81

f(v0)f(v1) . . . f(vℓ−1)f(v0) is a closed walk of odd length. By Lemma 1.1, f(v0)f(v1) . . . f(vℓ−1)f(v0) contains
an odd cycle, which implies ℓ(Y) ≤ ℓ(X).

We now introduce the notion of a core. Formally, we have the following.

Definition 108 (Core). A graph X is a core if every homomorphism φ : V (X) → V (X) is a bijection. That
is, every homomorphism from a core to itself is an automorphism.

Example 124. The simplest class of cores is the set of complete graphs. Odd cycles are also cores. We verify
that odd cycles are cores below.

Proposition 3.24. Let n ∈ Z+ and let X := C2n+1 be an odd cycle. Let f : V (X) → V (X) be a homomor-
phism. Then f is a bijection.

Proof. Suppose to the contrary that f is not a bijection. Then there exist vertices, which we call v1, vj , and vk
such that 1 < j < 2n+ 1 and f(v1) = f(vj) = vk. Let P := v1v2 · · · vj be a path in C2n+1. As f(v1) = f(vj),
f(P) is a cycle of length less than 2n+ 1. However, C2n+1 contains no smaller cycles, a contradiction.

Cores provide a useful invariant to decide if there exists a homomorphism from X → Y . We first show that
X and Y being isomorphic cores is equivalent to X and Y being homomorphically equivalent. Next, we show
that every graph has a core, and a graph’s core is unique up to isomorphism. This implies that the relation →
is a partial order on the class of cores.

Definition 109 (Core of a Graph). Let X be a graph. The subgraph Y of X is said to be a core of X if Y is
a core and there exists a homomorphism from X to Y . We denote the core of X as X•.

We introduce another example of a core, which relates to coloring.

Definition 110 (χ-Critical Graph). A graph X is χ-critical if any proper subgraph of X has chromatic number
less than χ(X).

Remark: In particular, a χ-critical graph cannot have a homomorphism to any of its proper subgraphs. So a
χ-critical graph is a core (and therefore, its own core).

Lemma 3.6. Let X and Y be finite cores. Then X and Y are homomorphically equivalent if and only if they
are isomorphic.

Proof. If X ∼= Y , then the isomorphisms from X to Y and Y to X are homomorphisms and we are done.
Conversely, let f : V (X) → V (Y) and g : V (Y) → V (X) be homomorphisms. Then g ◦ f : V (Y) → V (Y)
and f ◦ g : V (X) → V (X) are homomorphisms. As X and Y are cores, g ◦ f and f ◦ g are automorphisms.
In particular, f and g are necessarily surjective. As f and g are surjective homomorphisms and X and Y are
finite, f and g are necessarily injective. Therefore, f and g are isomorphisms. So X ∼= Y , as desired.

We introduce the definition of a retract and induced subgraph before proving the next lemma.

Definition 111 (Retract). Let X be a graph. The subgraph Y of X is said to be a retract if there exists a
homomorphism f : X → Y such that the restriction of f to Y is the identity map. We refer to f as a retraction.

Definition 112 (Induced Subgraph). Let X be a graph, and let Y be a subgraph of X. The graph Y is said
to be an induced subgraph of X if E(Y) = {ij ∈ E(X) : i, j ∈ V (Y)}.

Lemma 3.7. Every graph X has a core, which is an induced subgraph and is unique up to isomorphism.

Proof. As X is finite and the identity map is a homomorphism, there is a finite and non-empty set of subgraphs
Y of X such that X → Y . So there exists a minimal element H with respect to inclusion. Let f : X → H be
a homomorphism. As H is minimal, f restricted to H is an automorphism ϕ of H. Composing f with ϕ−1

yields the identity map on H. So H is a retract, and therefore a core. We note that as H is a retract, H is an
induced subgraph of X.

Now suppose H1, H2 are cores of X. Let fi : V (X) → V (Hi) be a homomorphism. Then for each i ∈ [2], fi
restricted to H−i is a homomorphism from Hi to H−i (where −i ∈ [2]−{i}). So by Lemma 3.6, H1

∼= H2.

We are now able to characterize homomorphic equivalence in terms of cores.

82

Theorem 3.28. Two graphs X and Y are homomorphically equivalent if and only if their cores are isomorphic.

Proof. Suppose first X and Y are homomorphically equivalent. We note that as X• is the core of X, the
identity map id : V (X•) → V (X) is a graph homomorphism. As Y • is the core of Y , we have that Y → X.
So we have a sequence of homomorphisms:

X• → X → Y → Y •.

These homomorphisms compose to form a homomorphism from X• to Y •. By similar argument, there exists
a homomorphism from Y • to X•. Lemma 3.6 implies that X• ∼= Y •.

Conversely, suppose X• ∼= Y •. Then we have the following sequences of homomorphisms:

X → X• → Y • → Y, and

Y → Y • → X• → X.

Each of these sequences composes to form a homomorphism from X to Y and from Y to X respectively, so X
and Y are homomorphically equivalent.

We now discuss basic results related to cores of vertex-transitive graphs. These results are quite elegant,
powerful, and simple. Furthermore, they provide nice analogs to group theoretic results such as Lagrange’s
Theorem and group actions. We begin by showing that the core of a vertex transitive graph is also vertex
transitive.

Theorem 3.29. Let X be a vertex transitive graph. Then the core of X, X•, is also vertex transitive.

Proof. Let x, y ∈ V (X•) be distinct. Then there exists ϕ ∈ Aut(X) such that ϕ(x) = y. Let f : X → X•

be a retraction. The composition f ◦ ϕ : X → X• forms a homomorphism whose restriction to X• is an
automorphism of X• mapping x 7→ y. So X• is vertex transitive.

Our next theorem provides an analog of Lagrange’s Theorem in the case of cores of vertex transitive graphs.
Recall the proof of Lagrange’s Theorem used group actions. In this next result, we use the core and the
homomorphism to partition the parent graph into parts of equal cardinality, which is analogous to a group
action.

Theorem 3.30. Let X be a vertex transitive graph with the core X•. Then |X•| divides |X|.

Proof. Let ϕ : X → X• be a surjective homomorphism, and let γ : X• → X be a homomorphism. It suffices
to show each fiber of ϕ has the same order. Let u ∈ X•. Define the set S as follows:

S = {(v, ψ) : v ∈ V (X•), ψ ∈ Aut(X), and (ϕ ◦ ψ ◦ γ)(v) = u}.

We count S in two ways. As ϕ, ψ, and γ are all homomorphisms and X• is a core, ϕ ◦ ψ ◦ γ ∈ Aut(X•). As ϕ
and γ are fixed, there exists a unique v dependent only on ψ such that (ϕ ◦ ψ ◦ γ)(v) = u. So |S| = |Aut(X)|.

We now count S in a second way. As (ϕ◦ψ◦γ)(v) = u, we have that (ψ◦γ)(v) ∈ ϕ−1(u). We select v ∈ V (X•),
x ∈ ϕ−1(u), and an automorphism ψ mapping γ(v) 7→ x. There are |X•| ways to select v and |ϕ−1(u)| ways
to select x. These selections are independent; so by rule of product, we multiply |X•| · |ϕ−1(u)|. Now the set
of automorphisms mapping γ(v) → x is a left-coset of Stab(γ(v)), which has cardinality |Stab(γ(v))|. As X
is vertex transitive, the orbit of v under the action of Aut(X) is V (X). So by the Orbit-Stabilizer Lemma,
|Stab(γ(v))| = |Aut(X)|/|X|. By rule of product, |S| = |X•| · |ϕ−1(u)| · |Aut(X)|/|X|. As |Aut(X)| = |S|, we
deduce that |ϕ−1(u)| = |X|/|X•|. So |X•| divides |X| and we are done.

Theorem 3.30 provides a couple nice corollaries. The first is an analog of group theory, which states that a
group of prime order p is isomorphic to Zp. The second corollary provides conditions to deduce when a graph
is triangle free.

Corollary 3.24.1. If X is a connected vertex transitive graph of prime order p, then X is a core.

Proof. As X is connected and has prime order, X ̸→ K1. So |X•| = |X| and X• → X. So X ∼= X•.

83

Corollary 3.24.2. Let X be a vertex transitive graph of order n, with χ(X) = 3. If n is not a multiple of 3,
then X is triangle-free.

Proof. As χ(X) = 3, there exists a homomorphism from X to K3. If K3 was the core of X, then K3 would be
contained in X. By Theorem 3.30, 3 would divide n, a contradiction.

We next introduce the notion of graph product, which is analogous to the direct product of groups. In group
theory, the direct product of G × H is the set of ordered pairs {(g, h) : g ∈ G, h ∈ H} with the operation
preserved componentwise. That is, (a, b)(c, d) = (ac, bd) where ac is evaluated in G and bd is evaluated in H.
The graph product is based on this idea, preserving the adjacency relation component wise.

Definition 113 (Graph Product). Let X and Y be graphs. Then the product X × Y is the grah with the
vertex set {(x, y) : x ∈ V (X), y ∈ V (Y)} and two vertices (a, b), (c, d) in X × Y are adjacent if and only if
ac ∈ E(X) and bd ∈ E(Y).

Remark: Note that the graph product is not a Cartesian product. In algebraic graph theory, the Cartesian
product of two graphs is denoted as X□Y and is defined differently than the graph product above.

In a graph product, we have X × Y ∼= Y ×X, with the isomorphism sending (x, y) 7→ (y, x). So factors in a
product graph may be reordered in the product. However, a graph may have multiple factorizations. We see
that:

K2 × 2K3
∼= 2C6

∼= K2 × C6.

So X ×Y ∼= X ×Z does not imply that Y ∼= Z. We also note that for a fixed x ∈ V (X), the vertices of X ×Y
of the form {(x, y) : y ∈ Y } form an independent set. So X×K1 is the empty graph of order |X|, rather than X.

We have already seen in the study of quotient groups that the natural projection homomorphism is quite useful.
The natural projection homomorphism is also a common tool in studying direct products of groups, and it
comes up frequently in the study of graph homomorphisms. Formally, if we have the product graph X × Y ,
the projection map: pX : (x, y) 7→ x is a homomorphism from X × Y → X. There is similarly a projection
pY : X × Y → Y . We use the projection map to count homomorphisms from a graph Z to a product graph
X ×Y . We denote the set of homomorphisms from a graph G to a graph H as Hom(G,H). Our next theorem
provides a bijection from:

Hom(Z,X × Y) → Hom(Z,X)×Hom(Z, Y).

Theorem 3.31. Let X,Y and Z be graphs. Let f : Z → X and g : Z → Y be homomorphisms. Then there
exists a unique homomorphism ϕ : Z → X × Y such that f = pX ◦ ϕ and g = pY ◦ ϕ.

Proof. The map ϕ : z 7→ (f(z), g(z)) is clearly a homomorphism from Z to X × Y . Furthermore, we have
f = pX ◦ ϕ and g = pY ◦ ϕ. The homomorphism ϕ is uniquely determined by our selections of f and g. So the
map ϕ 7→ (f, g) is a bijection.

Corollary 3.24.3. For any graphs X,Y, and Z, we have:

|Hom(Z,X × Y)| = |Hom(Z,X)| · |Hom(Z, Y)|

3.3.7 Algebraic Combinatorics- The Determinant

TODO

3.4 Group Actions

3.4.1 Conjugacy

In this section, we explore results related to the action of conjugation. Recall that G acts on the set A by
conjugation, with g ∈ G sending g : a 7→ gag−1. We focus on the case when G acts on itself by conjugation.

Definition 114 (Conjugacy Classes). We say that two elements a, b ∈ G are conjugate if there exists a g ∈ G
such that b = gag−1. That is, a and b are conjugate if they belong to the same orbit when G acts on itself by
conjugation. Similarly, we say that two subsets of G, S and T , are conjugate if T = gSg−1 for some g ∈ G.
We refer to these orbits as conjugacy classes.

84

Example 125. If G is Abelian, the action of G on itself by conjugation is the trivial action because gag−1 =
gg−1a = a.

Example 126. When Sym(3) acts on itself by conjugation, the conjugacy classes are {1}, {(1, 2), (1, 3), (2, 3)},
{(1, 2, 3), (1, 3, 2)}.

Remark: In particular, if |G| > 1; then under the action of conjugation, G does not act transitively on itself.
We see that {1} is always a conjugacy class, so there are at least two orbits under this action.

We now use the Orbit-Stabilizer Lemma to compute the order of each conjugacy class.

Proposition 3.25. Let G be a group, and let S ⊂ G. The number of conjugates of S is the index of the
normalizer in G, [G : NG(S)].

Proof. We note that Stab(S) = {g ∈ G : gSg−1 = S} = NG(S). The conjugates of S lie in the orbit
O(S) = {gSg−1 : g ∈ G}. The result follows from the Orbit-Stabilizer Lemma.

As the orbits partition the group, orders of the conjugacy classes add up to |G|. This observation provides us
with the Class Equation, which is a powerful tool in studying the orbits in the action of conjugation.

Theorem 3.32 (The Class Equation). Let G be a finite group, and let g1, . . . , gr be represnetatives of the
distinct conjugacy classes in G that are not contained in Z(G). Then:

|G| = |Z(G)|+
r∑

i=1

[G : CG(gi)].

Proof. We note that for a single gi ∈ G, NG(gi) = CG(gi). So Stab(gi) = CG(gi). We note that for an element
x ∈ Z(G), gxg−1 = x for all g ∈ G. So the conjugacy class of x contains only x. Thus, the conjugacy classes
of G are:

{1}, {z2}, . . . , {zm},K1, . . . ,Kr,

where z2, . . . , zm ∈ Z(G) and gi ∈ Ki for each i ∈ [r]. As the conjugacy classes partition G and |Ki| = [G :
CG(gi)] by Proposition 3.25, we obtain:

|G| =
m∑
i=1

1 +

r∑
i=1

|Ki|

= |Z(G)|+
r∑

i=1

[G : CG(gi)].

We consider some examples to demonstrate the power of the Class Equation.

Example 127. Let G = D8. We use the class equation to deduce the conjugacy classes of D8. We first
note Z(D8) = {1, r2}, which yields the conjugacy classes {1} and {r2}. It will next be shown that for each
x ̸∈ Z(D8), |CG(x)| = 4. As CG(x) = Stab(x) under the action of conjugation, the Orbit-Stabilizer Lemma
gives us that the remaining conjugacy classes have order 2.

Recall that the three subgroups of order 4 in D8 are ⟨r⟩, ⟨s, r2⟩, and ⟨sr, r2⟩. Each of these subgroups is
Abelian. For any x ̸∈ Z(D8), ⟨x⟩ ≤ CD8(x) and Z(D8) ≤ CD8(x). So by Lagrange’s Theorem, |CD8(x)| ≥ 4.
As x ̸∈ Z(D8), some element of G does not commute with x. So |CD8(x)| ≤ 7. So by Lagrange’s Theorem,
|CD8(x)| = 4. So D8 has three conjugacy classes of order 2, and two conjugacy classes of order 1, which are
listed below:

{1}, {r2}, {r, r3}, {s, sr2}, {sr, sr3}

We next use the class equation to prove that every group of prime power order has a non-trivial center.

Theorem 3.33. Let P be a group of order pα for a prime p and α ≥ 1. Then Z(P) ̸= 1.

85

Proof. If P is Abelian, then Z(P) = P . So suppose P is not Abelian. Then there exists at least one element
g ∈ P such that g ̸∈ Z(P). Suppose the distinct conjugacy classes of P are:

{1}, {z2}, . . . , {zm},K1, . . . ,Kr.

Let g1, . . . , gr be distinct representatives of K1, . . . ,Kr respectively. As no conjugacy class is equal to P , p
divides each |Ki| = [P : CP (gi)]. By the class equation, we have:

|P | = |Z(P)|+
r∑

i=1

|Ki|.

As p divides |P | and p divides each |Ki|, p must divide |Z(P)|. So Z(P) ̸= 1.

Theorem 3.33 provides a nice corollary, allowing us to easily classify groups of order p2 where p is prime.

Corollary 3.25.1. Let P be a group of order p2. Then P ∼= Zp2 or P ∼= Zp × Zp.

Proof. By Theorem 3.33, Z(P) ̸= 1. If P has an element of order p2, then P ∼= Zp2 and we are done. So
suppose instead that all every non-identity element has order p. Let x ∈ P have order p, and let y ∈ P \ ⟨x⟩
have order p. Observe that ⟨x⟩ ∩ ⟨y⟩ = 1, so p2 = |⟨x, y⟩| > |⟨x⟩| = p. Thus, P = ⟨x, y⟩. Furthermore, as p is
the smallest prime dividing |P |, any subgroup of order p is normal in P . So ⟨x⟩, ⟨y⟩ ⊴ P . So P ∼= ⟨x⟩ × ⟨y⟩.
As x, y have order p, ⟨x⟩ × ⟨y⟩ ∼= Zp × Zp. The result follows.

Remark: This proof is a more elegant way to demonstrate that a group of order p2 for a prime p is Abelian.
An alternate proof exists using the quotient P/Z(P). We take representatives of P , project them down to
P/Z(P), operate in the quotient group, then lift back to P .

We next generalize Theorem 3.33.

Theorem 3.34. Let p be prime, and let P be a p-group. Suppose H ⊴ P , with H ̸= {1}. Then H∩Z(P) ̸= {1}.

Proof. Let P act on H by conjugation. Denote HP as the set of fixed points under this action, and let
K1, . . . ,Kr be the non-trivial conjugacy classes under this action. We have that:

|H| = |HP |+
r∑

i=1

|Kr|.

We note that as H ≤ P , p divides |H|. Next, we note that |Ki| = [H : CP (hi)], where hi ∈ Ki is arbitrary. As
Ki is non-trivial, |Ki| > 1. So by the Orbit-Stabilizer Theorem, p divides |Ki|. Observe that 1 ∈ HP , so HP is
non-empty. Thus, p divides |HP |. In particular, we note that:

HP = {h ∈ H : ghg−1 = h, for all g ∈ P}
= {h ∈ H : gh = hg, for all g ∈ P}
= H ∩ Z(P).

In particular, we have that as p divides |HP | and |HP | > 1, that HP ̸= 1. The result follows.

We now consider the case when the symmetry group acts on itself by conjugation. We obtain several important
results. The first result we present shows that the permutation cycle type is preserved under conjugation. This
observation was the key to breaking the Enigma cipher during World War II. The preservation of cycle type
under conjugation yields a nice bijection between integer partitions of n and the conjugacy classes of Sn. Note
that an integer partition is a sequence of non-decreasing positive integers that add up to n.

Proposition 3.26. Let σ, τ ∈ Sym(n). The cycle decomposition of τστ−1 is obtained from σ by replacing each
entry i in the cycle decomposition of σ with τ(i).

Proof. Suppose σ(i) = j. As τ is a permutation, we consider the input τ(i) without loss of generality. So
τστ−1(τ(i)) = τσ(i) = τ(j). So while i, j appear consecutively in σ, τ(i) precedes τ(j) in τστ−1.

We now formally define the cycle type of a permutation.

86

Definition 115 (Cycle Type). Let σ ∈ Sym(n) be the product of disjoint cycles of lengths n1, . . . , nk with
n1 ≤ n2 ≤ ... ≤ nk (including the 1-cycles), then the sequence of integers (n1, . . . , nk) is the cycle type of σ.
Note that n1 + n2 + . . .+ nk = n.

Remark: It is easy to see the bijection between integer partitions and cycle types. So it remains to be shown
that all permutations of a given cycle type belong to the same conjugacy class.

Proposition 3.27. Two elements of Sym(n) are conjugate in Sym(n) if and only if they have the same cycle
type. The number of conjugacy classes of Sym(n) equals the number of partitions of n.

Proof. If two permutations are conjugate in Sym(n), then they have the same cycle type by Proposition 3.26.
Conversely, suppose two permutations σ and τ have the same cycle type in Sym(n). We construct a permutation
γ such that τ = γσγ−1. We begin by ordering the cycles in the decompositions into disjoint cycles of σ and τ
in non-decreasing order by length, including the 1-cycles. That is, we write:

σ = α1 · · ·αk, and

τ = β1 · · ·βk,

where αi and βi have the same length. We write:

αi = (αi1, αi2, . . . , αiℓ), and

βi = (βi1, βi2, . . . , βiℓ).

Define the permutation γ by γ(αij) = βij . From the proof of Proposition 3.26, γαiγ
−1 = βi. So:

γσγ−1 = γ(α1 · · ·αk)γ
−1

=
k∏

i=1

(γαiγ
−1)

=

k∏
i=1

βi

= τ.

So σ and τ are conjugate, as desired.

We illustrate the bijection in the case of Sym(5).

Example 128.

Partition of 5 Representative of Conjugacy Class

1, 1, 1, 1, 1 (1)
1, 1, 1, 2 (1, 2)
1, 1, 3 (1, 2, 3)
1, 4 (1, 2, 3, 4)
5 (1, 2, 3, 4, 5)

1, 2, 2 (1, 2)(3, 4)
2, 3 (1, 2)(3, 4, 5)

Example 129. Using the previous proposition and the Orbit-Stabilizer Lemma, we are able to compute the
number of conjugates and centralizers for various permutations. We consider the case of anm cycle σ ∈ Sym(n).
Recall that all m cycles belong to the same conjugacy class as σ. We first compute the number of m-cycles
in Sym(n). We select m elements from [n] which can be done in

(
n
m

)
ways. Each set of m selements is

then permuted in m! ways. As cyclic rotations of a cycle yield the same permutation, we divide out by m to
obtain

(
n
m

)
·(m−1)! cycles of length m in Sym(n). This is the order of the orbit or conjugacy class containing σ.

By the Orbit-Stabilizer Lemma, we have
(
n
m

)
· (m − 1)! =

Sym(n)

|CG(σ)|
, where |Sym(n)| = n!. We now compute

|CG(σ)|. Any permutation σ commutes with ⟨σ⟩. Additionally, σ commutes with of the permutations from
which it is disjoint. There are (n − m)! such permutations. By the Orbit-Stabilizer Lemma, |CG(σ)| =
m · (n − m)!. Similar combinatorial analysis can be used to deduce the order of both the centralizers and
conjugacy classes for other cycle types.

87

The integer partitions of n ∈ N can be enumerated using techniques from algebraic combinatorics, such as gen-
erating functions. Nicholas Loehr’s Bijective Combinatorics text and Herbert Wilf’s Generatingfunctionology
text are good resources for further study on enumerating integer partitions.

3.4.2 Automorphisms of Groups

In this section, we study basic properties of automorphisms of groups. We have already seen examples of
automorphisms, with the study of graphs. Analogously, for a group G, Aut(G) denotes the automorphism
group of G. The study of automorphisms provides additional information about the structure of a group and
its subgroups. We begin by showing the action of conjugation induces automorphisms.

Theorem 3.35. Let G be a group, and let H ⊴ G. Then G acts by conjugation on H as automorphisms of
H. In particular, the permutation representation of this action is a homomorphism from G into Aut(H) with
kernel CG(H), with G/CG(H) ≤ Aut(H).

Proof. Let g ∈ G, and let σg : h 7→ ghg−1 be the permutation representation of g. As H is normal, each such σg
is a bijection. It suffices to show that σg is a homomorphism. Let h, k ∈ H and consider σg(hk) = g(hk)g−1 =
(ghg−1)(gkg−1) = σg(h)σg(k). So σg ∈ Aut(H). The kernel of this action are precisely the elements in g which
induce the trivial action, which is equivalent to the kernel being CG(H). We apply the First Isomorphism
Theorem to deduce that G/CG(H) ≤ Aut(H).

Theorem 3.35 has a couple nice corollaries to tedious homework problems from the introductory group theory
material. In particular, it follows immediately that conjugate elements and conjugate subgroups have the same
order.

Corollary 3.27.1. Let K be a subgroup of the group G. Then K ∼= gKg−1 for any g ∈ G. Conjugate elements
and conjugate subgroups have the same order.

Proof. We apply Theorem 3.35, using H = G as G is normal in itself. The result follows immediately.

Corollary 3.27.2. For any subgroup H of a group G, the quotient group NG(H)/CG(H) ≤ Aut(H). In
particular, G/Z(G) ≤ Aut(G).

Proof. We apply Theorem 3.35 toNG(H) acting onH by conjugation to deduce thatNG(H)/CG(H) ≤ Aut(H).
As G = NG(G) and CG(G) = Z(G), we have that G/Z(G) ≤ Aut(G) by the previous case.

Definition 116 (Inner Automorphisms). Let G be a group, and let g ∈ G. The inner automorphisms of G
are Inn(G) ∼= G/Z(G). The outer automorphisms of G are Out(G) ∼= Aut(G)/Inn(G).

Remark: Note that Inn(G) is normal in Aut(G), so any inner automorphism σ of the group G satisfies
g ◦ σ(a)g−1 = σ(g(a)) for any g ∈ Aut(G). The group Out(G) measures how far away Aut(G) is from consist-
ing only of inner automorphisms.

We conclude with a final fact about cyclic groups.

Proposition 3.28. Let G ∼= Zn. Then Aut(G) ∼= Z×
n .

Proof. There are ϕ(n) generators of Zn, where ϕ(n) denotes Euler’s Totient Function. So for every a such
that gcd(a, n) = 1, the map σa : x 7→ xa is an automorphism. The map sending σa 7→ a is a surjective map
from Aut(Zn) → Z×

n . Now observe that σa ◦ σb(x) = (xb)a = xab = σab(x), so the map sending σa 7→ a is a
homomorphism. The kernel of this homomorphism is {1}; so by the First Isomorphism Theorem, Aut(Zn) ∼=
Z×
n .

3.4.3 Sylow’s Theorems

The Sylow Theorems are a stronger partial converse to Lagrange’s Theorem than Cauchy’s Theorem. More
importantly, they provide an important set of combinatorial tools to study the structure of finite groups and
are the high point of a senior algebra course. Standard proofs of the Sylow’s First Theorem usually proceed by
induction, leveraging the Well-Ordering Principle in the background. We instead offer a combinatorial proof
using group actions, which is far more enlightening and elegant. To do this, we need a result from combinatorial
number theory known as Lucas’ Congruence for Binomial Coefficients. We begin with a couple helpful lemmas,
which we will need to prove Lucas’ Congruence for Binomial Coefficients.

88

Lemma 3.8. Let j,m ∈ N and p be prime. Then:

(
m+ p

j

)
≡
(
m

j

)
+

(
m

j − p

)
(mod p).

Proof. Let Zp act on Y =
(
[m+p]

j

)
sending S 7→ gS = {g · s : s ∈ S}. The orbits under this action partition

Y . Every orbit has order 1 or order p, as p is prime. So |Y | is congruent modulo p to the number of orbits M
of order 1. We show M =

(
m
j

)
+
(

m
j−p

)
. The orbits of order 1 are in the kernel of the action; that is, the sets

S ∈ Y such that gS = S for all g ∈ Zp. It suffices to count the number of sets S ∈ Y such that the generator
h = (1, 2, . . . , p) ∈ Zp fixes S. Observe that h(x) = x for all x > p. We note that there are

(
m
j

)
sets such that

S ∩ [p] = ∅. Each such set S is fixed under the action of Zp. If instead S ∩ [p] ̸= ∅, it is necessary that [p] ⊂ S.
This leaves j − p remaining choices for elements in S, which must be chosen from {p+1, . . . ,m+ p}. So there
are

(
m
j−p

)
such selections. By rule of sum, these cases are disjoint, so M =

(
m
j

)
+
(

m
j−p

)
. This completes the

proof.

Lemma 3.9. Let p be prime. Let a, c ∈ N and 0 ≤ b, d < p. Then
(
ac+b
cp+d

)
≡
(
a
c

)(
b
d

)
(mod p).

Proof. The proof is by induction on a. When a = 0 and c > 0, both sides of the congruence are 0. If a = c = 0,
then both sides of the congruence are

(
b
d

)
. Now suppose this result holds up to a given a, and for all b, c, d.

We prove true for the a+1 case. Consider
((a+1)p+b

cp+d

)
=
((ap+b)+p

p+d

)
. We apply Lemma 3.8 with m = ap+ b and

p to obtain the following: (
(ap+ b) + p

p+ d

)
≡
(
ap+ b

cp+ d

)
+

(
ap+ b

(c− 1)p+ d

)
(mod p)

≡
(
a

c

)(
b

d

)
+

(
a

c− 1

)(
b

d

)
(mod p),

where the last equality from the inductive hypothesis. We now apply the binomial identity that
(
n+1
k

)
=(

n
k

)
+
(

n
k−1

)
and factor the

(
b
d

)
to obtain:

(
a

c

)(
b

d

)
+

(
a

c− 1

)(
b

d

)
≡
((

a

c

)
+

(
a

c− 1

))(
b

d

)
≡
(
a+ 1

c

)(
b

d

)
(mod p).

The result follows.

With Lemmas 3.8 and 3.9 in tow, we prove Lucas’ Congruence for Binomial Coefficients.

Theorem 3.36 (Lucas’ Congruence for Binomial Coefficients). Let p be prime, and let k, n ∈ N with k ≤ n.
Consider the base-p expansions n =

∑
i≥0 nip

i and k =
∑

i≥0 kip
i, where 0 ≤ ni, ki < p. Then:

(
n

k

)
≡
∏
i≥0

(
ni
ki

)
(mod p),

where
(
0
0

)
= 1 and

(
a
b

)
= 0 whenever b > a.

Proof. The proof is by induction on n. When k > n, then ki > ni for some i. So both sides of the congruence
are 0. We now consider the case when k ≤ n. The result holds when n ∈ {0, . . . , p − 1} as n0 = n, k0 = k
and for all i > 0 we have ni = ki = 0. Now suppose the result holds true up to some arbitrary n− 1 ≥ p− 1.
We prove true for the n case. By the division algorithm, we write n = ap + n0 and k = bp + k0 where
n0, k0 ∈ {0, . . . , p − 1}. We write a =

∑
i≥0 ni+1p

i and c =
∑

i≥0 ki+1p
i in base p. We apply Lemma 3.9 to

obtain that: (
n

k

)
≡
(
ap

bp

)(
n0
k0

)
(mod p).

Applying the inductive hypothesis to
(
ap
bp

)
, we obtain that:(

ap

bp

)(
n0
k0

)
≡
(
n0
k0

)∏
i≥1

(
ni
ki

)
≡
∏
i≥0

(
ni
ki

)
(mod p).

The completes the proof.

89

Lucas’ Congruence for Binomial Coefficients provides a nice corollary, which we will need to prove Sylow’s
First Theorem.

Corollary 3.28.1. Let a, b ∈ Z+, and let p be a prime that does not divide b. Then p does not divide
(
pab
pa

)
.

Proof. We write b =
∑

i≥0 bip
i in base p. The base p expansion of pab = . . . b3b2b1b0000 . . . 0, and the base p

expansion of pa = 1 . . . 00000. Without loss of generality, suppose b0 ̸= 0. By Lucas’ Congruence for Binomial
Coefficients, we have: (

pab

pa

)
≡
(
b0
1

)
≡ b0 ̸= 0 (mod p).

We now introduce a couple definitions before examining the Sylow Theorems.

Definition 117. Let G be a finite group, and let p be a prime divisor of |G|.

(A) A group of order pα, for α > 0, is called a p-group. Subgroups of p-groups are called p-subgroups.

(B) If |G| = pαm, where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of
G. The set of Sylow p-subgroups of G is denoted Sylp(G), and np(G) := |Sylp(G)|. When there is no
ambiguity, we may simply right np instead of np(G).

The Sylow Theorems provide combinatorial tools to count the number of Sylow p-subgroups, as well as char-
acterize structural results. In particular, the Sylow Theorems give us the result that np = 1 if and only if
unique Sylow p-subgroup is normal in G. This result helps us determine if a finite group is simple; that is, a
group whose only normal subgroups are 1 and G. We begin with Sylow’s First Theorem, which provides for
the existence of Sylow p-subgroups for every prime divisor p of a finite group |G|. So Sylow’s First Theorem is
a stronger partial coverse to Lagrange’s Theorem than Cauchy’s Theorem.

Theorem 3.37 (Sylow’s First Theorem). Let G be a finite group, and let p be a prime divisor of |G|. We
write |G| = pαm, where α ∈ N and p does not divide m. Then there exists a P ≤ G of order pα. That is,
Sylp(G) ̸= ∅.

Proof. Let X =
(
G
pα

)
, so |X| =

(
pαm
pα

)
. Now let G act on X by left multiplication. So for S ∈ X, gS = {gs :

s ∈ S}. By Lucas’ Congruence for Binomial Coefficients, we note p does not divide |X|. So there exists some
T ∈ X such that |O(T)| is not divisible by p. By the Orbit-Stabilizer Lemma, |O(T)| = |G|/|Stab(T)| =
pαm/|Stab(T)|. As p does not divide |O(T)|, |Stab(T)| = cpα for some c that divides m. It suffices to show
c = 1. Let t ∈ T and consider Stab(T)t = {ht : h ∈ Stab(T)}, which is a subset of T . So |Stab(T)| =
|Stab(T)t| ≤ |T | = pα. Thus, Stab(T) ∈ Sylp(G).

Prior to introducing Sylow’s Second Theorem, we prove a lemma known as the p-group Fixed Point Theorem.
We leverage this the p-group Fixed Point Theorem in proving both Sylow’s Second and Third Theorems.

Theorem 3.38 (p-group Fixed Point Theorem). Let p be a prime, and let G be a finite group of order pα for
α > 0. Let G act on a set X, and let S be the set of fixed points under this action. Then |G| ≡ |S| (mod p).
In particular, if p does not divide |X|, then |S| ≠ ∅.

Proof. Let x ∈ X \ S. Then Stab(x) is a proper subgroup of G. Thus, p divides [G : Stab(x)]. Recall that
the orbits partition X. Let x1, . . . , xk ∈ X \ S be representatives of the non-fixed point orbits. As the orbits
partition X and by the Orbit-Stabilizer Lemma, we have:

|X| = |S|+
k∑

i=1

[G : Stab(xi)].

As
∑k

i=1[G : Stab(xi)] is divisible by p, we have |X| ≡ |S| (mod p). If p does not divide |X|, then |S| ̸= 0
(mod p). So S ̸= ∅ in this case.

90

Sylow’s Second Theorem follows as a consequence of the p-group Fixed Point Theorem. We show first that every
p-subgroup is contained in a Sylow p-subgroup of G. This is done using the action of conjugation. Intuitively,
a p-subgroup of G cannot be contained in a subgroup H ≤ G where |H| divides m. This is a consequence of
Lagrange’s Theorem. In particular, Lagrange’s Theorem implies that every subgroup of a Sylow p-subgroup
is a p-subgroup of G. Sylow’s Second Theorem provides a full converse to this statement. We then show
that every pair of Sylow p-subgroups are conjugate, which follows from the fact that every p-subgroup of G is
contained in a Sylow p-subgroup of G.

Theorem 3.39 (Sylow’s Second Theorem). Let G be a finite group, and let p be a prime divisor of |G|. We
write |G| = pαm, where α ∈ N and p does not divide m. If P is a Sylow p-subgroup of G and Q is a p-subgroup
of G, then there exists a g ∈ G such that Q ≤ gPg−1. In particular, any two Sylow p-subgroups of G are
conjugate .

Proof. Let P ∈ Sylp(G). We consider the left cosets of G/P . Let Q act on G/P by left-multiplication. Observe
that p does not divide [G : P] = |G/P |. By the previous theorem, there exists a fixed point of this action. Let
gP be such a fixed point. So for every q ∈ Q, qgP = gP , so g−1qgP = P . That is, g−1Qg ⊂ P ; or equivocally,
Q ⊂ gPg−1. Thus, Q ≤ gPg−1 for some g, as desired. To show that all Sylow p-subgroups are conjugate, we
utilize the above argument setting Q to be a Sylow p-subgroup of G.

Sylows’s Third Theorem provides us a way to determine the number of Sylow p-subgroups in a finite group G.
This is particularly useful in deciding if a finite group has a normal subgroup of given prime power order. In
turn, we have a combinatorial tool to help us decide if a finite group is simple. Before proving Sylow’s Third
Theorem, we introduce a helpful lemma.

Lemma 3.10. Let G be a finite group, and let H be a p-subgroup of G. Then [NG(H) : H] ≡ [G : H] (mod p).

Proof. Let H act on the set of left cosets G/H by left multiplication. The set of fixed points are of the form
gH where hgH = gH for all h ∈ H. This is equivalent to g−1hg ∈ H for all h ∈ H. This is equivalent to
g−1Hg = H. So if gH is a fixed point under this action, then g ∈ NG(H). This is equivalent to gH ∈ NG(H)/H.
By the p-group fixed point theorem, [G : H] = |G/H| ≡ |NG(H)/H| (mod p). It follows immediately that
[NG(H) : H] ≡ [G : H] (mod p).

Theorem 3.40 (Sylow’s Third Theorem). Let G be a finite group, and let p be a prime divisor of |G|. We
write |G| = pαm, where α ∈ N and p does not divide m. The number of Sylow p-subgroups of G, np ≡ 1
(mod p). Furthermore, np = [G : NG(P)] for any P ∈ Sylp(G). So np divides m.

Proof. By Sylow’s Second Theorem, we have that all Sylow p-subgroups are conjugate. So G acts transitively
on Sylp(G) by conjugation. Now Stab(P) = NG(P), for any P ∈ Sylp(G). So by the Orbit-Stabilizer Theorem,
np = [G : NG(P)] for any P ∈ Sylp(G). In particular, we have:

m = [G : P] = [G : NG(P)] · [NG(P) : P] = np · [NG(P) : P].

So np divides m. Now by Lemma 3.10, m = [G : P] ≡ [NG(P) : P] (mod p). As m = np · [NG(P) : P], we have
that m · np ≡ m (mod p). As p is prime and np > 0, np ≡ 1 (mod P).

The Sylow Theorems have a nice corollary, which allows us to characterize normal Sylow p-subgroups.

Corollary 3.28.2. A Sylow p-subgroup P in the finite group G is normal in G if and only if np = 1.

Proof. Suppose first P ⊴ G. Then NG(P) = G. As all Sylow p-subgroups are conjugate, the conjugacy class
of P contains only P . This is equivalent to np = 1.

3.4.4 Applications of Sylow’s Theorems

The Sylow Theorems can be leveraged to provide deep insights into the structure of finite groups, particularly
as it pertains to the existence of normal subgroups. This in turn allows us to better understand the structures
of individual groups, large classes of finite groups, and to classify groups of a given order. We consider some
examples. Let G be a finite group of order pαm where p is a prime that does not divide m. Informally, if pα

is sufficiently large, then we have a unique Sylow p-subgroup

91

Proposition 3.29. Let p be prime, r ∈ Z+, and m ∈ [p− 1]. Let G be a group of order mpr. Then G is not
simple (that is, G has a proper normal subgroup).

Proof. By Sylow’s Third Theorem, np ≡ 1 (mod p) and np divides m. Since m < p, this forces np = 1. So
P ∈ Sylp(G) is a proper normal subgroup of G.

We now examine groups of order pq, where p and q are primes and p < q.

Proposition 3.30. Let G be a group of order pq, where p and q are primes with p < q. Let P ∈ Sylp(G) and
Q ∈ Sylq(G). Then Q ⊴ G. If q ̸≡ 1 (mod p), then P ⊴ G as well and G is cyclic.

Proof. By Sylow’s Third Theorem, nq ≡ 1 (mod q) and nq divides p. So nq ∈ {1, p}. As p < q, nq = 1, so
Q ⊴ G. Now suppose q ̸≡ 1 (mod p). As np

∣∣q, have that np ∈ {1, q} as q is prime. As q ̸= 1 (mod p) by
assumption and np ≡ 1 (mod p), we have that np = 1. So P ⊴ G. As |P | = p, P is cyclic. By Theorem 3.35,
G/CG(P) ≤ Aut(P). As p is prime and P is cyclic, |Aut(P)| = p− 1. By Lagrange’s Theorem, neither p nor
q divide p− 1. So CG(P) = G, which implies that P ≤ Z(G). Now G contains elements g ∈ P of order p and
h ∈ Q of order q. As P ≤ Z(G), gh = hg. So |gh| = pq. We conclude that G ∼= Zpq.

We next show that every group of order 30 has a subgroup isomorphic to Z15. Observe that if G is a group of
order 30, then [G : Z15] = 2, so Z15 is necessarily a normal subgroup of G.

Proposition 3.31. Let G be a group of order 30. Then Z15 ⊴ G.

Proof. Note that |G| = 2 · 3 · 5. By Sylow’s Third Theorem, we have that n3 ≡ 1 (mod 3) and n3
∣∣10. So

n3 ∈ {1, 10}. By similar argument, n5 ∈ {1, 6}. Suppose to the contrary that no Sylow-3 or Sylow-5 subgroup
is normal in G. Then n3 = 10 and n5 = 6. Each Sylow-5 subgroup contains four non-identity elements,
and each Sylow-3 subgroup contains two non-identity elements. This provides 20 elements of order 3 and
24 elements of order 4. However 20 + 24 > 30, a contradiction. So there exists a normal Sylow-3 subgroup
or normal Sylow-5 subgroup in G. Let P ∈ Syl3(G) and Q ∈ Syl5(G). By Corollary 3.21.1, PQ ≤ G. As
[G : PQ] = 2, PQ ⊴ G. So by Proposition 3.30, PQ ∼= Z15.

We next show that there are no simple groups of order 12. We will use this result to study simple groups of
order 60. In particular, this result will help us show that A5 is simple.

Proposition 3.32. There is no simple group of order 12.

Proof. By Sylow’s Third Theorem, n3 ≡ 1 (mod 3) and n3 ∈ {1, 4}. Similarly, n2 ≡ 1 (mod 2) and n2 ∈ {1, 3}.
If n3 = 1, then we are done. Suppose instead that n3 = 4. As every Sylow-3 subgroup is normal, each Sylow-3
subgroup has trivial intersection. This provides for 8 elements of order 3 and the identity. So necessarily, there
exists one Sylow-2 subgroup, which has order 4. This accounts for the remaining three elements of order 2 or
order 4. So there exists a non-trivial normal subgroup in a group of order 12.

Proposition 3.33. If G is a group of order 60 and G has more than one Sylow-5 subgroup, then G is simple.

Proof. Suppose to the contrary that G has more than one Sylow-5 subgroup and G is not simple. Let H ⊴ G
be a proper subgroup of G, with H ̸= 1. By Sylow’s Third Theorem, n5 = 6. Let P ∈ SylP (G). So
|NG(P)| = 10 as n5 = [G : P] = 6. Now suppose 5

∣∣|H|. Then H contains a Sylow-5 subgroup Q of G.
As H is normal, H necessarily contains all the conjugates of Q, which are the 6 Sylow−5 subgroups of G.
So |H| > 25, which implies |H| = 30. However, by Proposition 3.31, H contains a unique Sylow-5 subgroup,
which is in turn a Sylow-5 subgroup of G. This contradicts the assumption that n5 = 6. So 5 does not divide H.

If |H| = 6, then there is a single Sylow-3 subgroup Q in H which is also a Sylow-3 subgroup of G. As H
contains all the conjugates of Q, Q ⊴ G. So in this case, G is not simple.

Now by Proposition 3.32, if |H| = 12, then H contains a normal subgroup which is also a normal Sylow
subgroup of G. So without loss of generality, we have a normal subgroup of K of G with order |K| ∈ {3, 4}.
So |G/K| ∈ {15, 20}. By the first paragraph, there exists P ⊴ |G/K| with |P | = 5. Let π : G → G/K be the
natural projection homomorphism sending g 7→ gK. By the Lattice Isomorphism Theorem, P := π−1(P) ⊴ G.
As P has order 5, |P | is necessarily divisible by 5. However, we showed in the first paragraph that G does not
have a normal subgroup whose order is divisible by 5. So G is necessarily simple.

Corollary 3.33.1. A5 is simple.

92

Proof. Observe that ⟨(1, 2, 3, 4, 5)⟩ and ⟨(1, 3, 2, 4, 5)⟩ are two distinct Sylow-5 subgroups of A5. So by Propo-
sition 3.34, A5 is simple.

We conclude with the following remark. In many of these counting arguments, we used the fact that two
Sylow-p subgroups intersected trivially. This holds true for cyclic subgroups; however, when pα for α ≥ 2,
two Sylow-p subgroups may have non-trivial intersection. In these cases, the problems are not as amenable to
counting arguments.

3.4.5 Algebraic Combinatorics- Pólya Enumeration Theory

TODO

4 Turing Machines and Computability Theory

In this section, we explore the power and limits of computation without regards to resource usage. That is,
we seek to study which problems computers can and cannot solve, given unlimited time and space. More
succinctly, the goal is to provide a model of computation powerful enough to be representative of an algorithm.
The primitive automata in previous sections motivate this problem. Finite state automata compute memory-
less algorithms. While regular languages are quite interesting and useful, finite state automata fail to decide
context free languages such as L1 = {0n1n : n ∈ N}. To this end, we add an infinite stack to the finite state
automaton, where only the head of the stack may be accessed. We refer to this modified finite state automaton
as a pushdown automaton, which accepts precisely context-free languages. We again find a language beyond
the limits of pushdown automata- L2 = {0n1n2n : n ∈ N}, which does not satisfy the Pumping Lemma for
Context-Free Languages.

However, it is quite simple to design an algorithm to verify if an input string is of the form prescribed by L1

or L2. In fact, this would be a reasonable question in an introductory programming class. So clearly, it is
quite feasible to decide if a string is in L1 or L2. Thus, both of our models of computation, the finite state
automata and pushdown automata, are unfit to represent an algorithm in the most general sense. To this end,
we introduce a Turing Machine, the model of computation which serves as the litmus test for which problems
are solvable by computational means.

It is also important to note that there are numerous models of computation that are vastly different from the
Turing Machine; but with the exception of hypercomputation model, none are more powerful than the Turing
Machine. The Church-Turing Thesis conjectures that no model of computation is more powerful than the
Turing Machine. As hypercomputation is not thus far physically realizable, the Church-Turing Thesis remains
essentially an open problem.

4.1 Standard Deterministic Turing Machine

The standard deterministic Turing machine shares many similarities with the finite state automaton. Just like
the finite state automaton, the Turing Machine solves decision problems; that is, it attempts to decide if a
string is in a given language. Furthermore, both have a finite set of states. The next state of each machine
is determined by the given character being parsed and the current state. Unlike a finite state automaton
though, a Turing Machine can both read and write to the tape head. Furthermore, the Turing Machine also
has unlimited memory to the right with a fixed end at the left, and the tape head can move both left and right.
This allows us to parse characters multiple times and develop the notion of iteration in our computations.
Lastly, the Turing Machine has explicit accept and reject states, which take effect immediately upon being
reached. Formally, we define the standard Turing Machine as follows.

Definition 118 (Deterministic Turing Machine). A Turing Machine is a 7-tuple (Q,Σ,Γ, δ, q0, qacceptqreject)
where Q,Σ,Γ are all finite sets and:

� Q is the set of states.

� Σ is the input alphabet, not containing the blank symbol β.

� Γ is the tape alphabet, where β ∈ Γ and Σ ⊂ Γ.

93

� δ : Q×Γ → Q×Γ×{L, R} is the transition function, which takes a state and tape character and returns
the new state, the tape character to write to the current cell, then a direction for the tape head to move
one cell to the left or right (denoted by L or R respectively).

� q0 ∈ Q, the initial state.

� qaccept ∈ Q, the accept state.

� qreject ∈ Q, the reject state where qreject ̸= qaccept.

Let’s now unpack the Turing Machine some more. Conceptually, a standard Turing Machine starts with an
input string, which is written to an initially blank tape starting at the far left cell. It then executes starting
at the initial state q0, transitioning to other states as defined by the function δ, based on the current state
and input from the given tape cell. If evaluating this string in such a manner results in the Turing Machine
reaching its accepting halting state qaccept, then the Turing Machine is said to accept the input string. If the
Turing Machine does not visit qaccept, then it does not accept the given input string. However, if it does not
explicitly visit qreject, then the Turing Machine does not reject the input string; rather, it enters into an infinite
loop. The language of a Turing Machine M , L(M), is the set of strings the Turing Machine M accepts. We
introduce two notions of language acceptance.

Definition 119 (Recursively Enumerable Language). A language L is said to be recursively enumerable if
there exists a deterministic Turing Machine M such that L(M) = L. Note that if ω ̸∈ L, the machine M need
not halt on ω.

Definition 120 (Decidable Language). A language L is said to be decidable if L is there exists some Turing
Machine M such that L(M) = L and M halts on all inputs. We say that M decides L.

Remark: Every decidable language is clearly recursively enumerable. The converse is not true, and this will
be shown later with the undecidabilitiy of the Halting problem.

We now consider an example of a Turing Machine.

Example 130. Let Σ = {0, 1} and let L = {12k : k ∈ N} = (11)∗, so L is regular. A finite state automaton
can easily be constructed to accept L. Such a FSM diagram is provided below.

qreject

q0start q1

1

0
1

0

Now let’s construct a Turing Machine to accept (11)∗. The construction of the Turing Machine, is in fact, almost
identical to that of the finite state automaton. The Turing Machine will start with the input string on the far-left
of the tape, with the tape head at the start of the string. The Turing Machine has Q = {q0, q1, qreject, qaccept},
Σ = {0, 1}, and Γ = {0, 1, β}. Let the Turing Machine start at q0 and read in the character under the tape
head. If it is not a 1 or the empty string, enter qreject and halt. Otherwise, if the string is empty, enter qaccept
and halt. On the input of a 1, transition to q1 and move the tape head one cell to the right. While in q1, read
in the character on the tape head. If it is a 1, transition to q0 and move the tape head one cell to the right.
Otherwise, enter qreject and halt. The Turing Machine always halts, and accepts the string if and only if it
halts in state qaccept.

Observe the similarities between the Turing Machine and finite state automaton. The intuition should follow
that any language accepted by a finite state automaton (ie., any regular language) can also be accepted by a
Turing Machine. Formally, the Turing Machine simulates the finite state automaton by omitting the ability to
write to the tape or move the tape head to the left. We now consider a second example of a Turing Machine
accepting a context-free language.

94

Example 131. Let Σ = {0, 1} and let L = {0n1n : n ∈ N}. So L is context-free. We omit the construction of
a pushdown automaton, but simply provide a Turing Machine to accept this language. The Turing Machine
has a tape alphabet of Γ = {0, 1, 0̂, 1̂} and set of states Q = {q0, qfind-1, qfind-0, qvalidate, qaccept, qreject}. Concep-
tually, rather than using a stack as a pushdown automaton would, the Turing Machine will use its tape head.
Intuitively, the Turing Machine starts with a 0 and marks it, then moves the tape head to the right one cell at
a time looking for a corresponding 1 to mark. Once it finds and marks the 1, the Turing Machine then moves
the tape head to the left one cell at a time searching for the next unmarked 0 to mark. It then repeats this
procedure, looking for another unmarked 1 to mark. If it finds an unpaired 0 or 1, it rejects the string. This
procedure repeats until either the string is rejected, or we mark all pairs of 0’s and 1’s. In the latter case, the
Turing Machine accepts the string.

So initially the Turing Machine starts at q0 with the input string on the far-left of the tape, with the tape
head above the first character. If the string is empty, the Turing Machine enters qaccept and halts. If the first
character is a 1, the Turing Machine enters qreject and halts. If the first character is 0, the Turing Machine
replaces it with 0̂. It then moves the tape head to the right one cell and transitions to state qfind-1.

At state qfind-1, the Turing Machine moves the tape head to the right and stays at qfind-1 for each 0or0̂ character
it reads in and writes back the character it parsed. If at qfind-1 and the Turing Machine reads 1, then it writes
1̂ to the tape, moves the tape head to the left, and transitions to qfind-0. If no 1 is found, the Turing Machine
enters qreject and halts.

At state qfind-0, the Turing Machine moves the tape head to the left and stays at qfind-0 until it reads in 0. If
the Turing Machine reads in 0 at state qfind-0, it replaces the 0 with 0̂. It then moves the tape head to the
right one cell and transitions to state qfind-1. If no 0 is found once we have reached the far-left cell, the Turing
Machine transitions to state qvalidate.

At state qvalidate, the Turing Machine transitions to the right one cell at a time while staying at qvalidate. If it
encounters any 1, it enters qreject. Otherwise, the Turing Machine enters qaccept once reading in β.

Remark: Now that we provided formal specifications for a couple Turing Machines, we provide a more abstract
representation from here on out. We are more interested in studying the power of Turing Machines rather than
the individual state transitions, so high level procedures suffice for our purposes. This high level procedure
from the above example provides sufficient detail to simulate the Turing Machine. So for our purposes, this
level of detail is sufficient:

“Intuitively, the Turing Machine starts with a 0 and marks it, then moves the tape head to the right one
cell at a time looking for a corresponding 1 to mark. Once it finds and marks the 1, the Turing Machine then
moves the tape head to the left one cell at a time searching for the next unmarked 0 to mark. It then repeats
this procedure, looking for another unmarked 1 to mark. If it finds an unpaired 0 or 1, it rejects the string.
This procedure repeats until either the string is rejected, or we mark all pairs of 0’s and 1’s. In the latter case,
the Turing Machine accepts the string.”

We now introduce the notion of a configuration and provides a concise representation of the Turing Machine’s
state, tape head position, and the string written to the tape. Aside from providing a concise representation
of the Turing Machine, configurations are important in studying how Turing Machines work. In particular,
certain results in space complexity are derived by enumerating the possible configurations of a Turing Machine
on an arbitary input string. We formally define a Turing configuration below.

Definition 121 (Turing Machine Configuration). Let M be a Turing Machine run on the string s. A Turing
Machine Configuration is a string ω ∈ Γ∗QΓ∗, where Q is the current state of M , which we overlay on the
character of s highlighted by the tape head. The remaining characters in ω are the characters of the input string
s which M is parsing. The start configuration of M is q0s1 . . . sn (where n = |s|). The accept configuration is
a Turing Machine configuration where the state is qaccept, while in a rejecting configuration is a configuration
where the state is qreject. The accepting and rejecting configurations are both halting configurations.

Example 132. Recall the Turing Machine in Example 130. We consider the input string 1111. The initial
configuration is q0111. The subsequent configuration is 1q111.

This example motivates the yields relation, which enables us to textually represent a sequence of Turing
computations on a given input string.

95

Definition 122 (Yields Relation). Let M be a Turing Machine parsing the input string ω. The yields relation
is a binary relation on Γ∗QΓ∗. We say that the configuration Ci yields the configuration Ci+1 if Ci+1 can
be reached from a single step (or invocation of the transition function) from Ci. We denote this relation as
Ci ⊢ Ci+1.

Example 133. In running the Turing Machine from Example 130 on 1111, we have the sequence of configu-
rations: q0111 ⊢ 1q111. Similarly, 1q111 ⊢ 11q01. We then have 11q01 ⊢ 111q1, and in turn 111q1 ⊢ 1111qaccept,
where 1111qaccept is an accepting configuration.

4.2 Variations on the Standard Turing Machine

In automata theory, one seeks to understand the robustness of a model of computation with respect to vari-
ation. That is, does the introduction of nuances such as non-determinism or multiple tapes allow for a more
powerful machine? Recall that deterministic and non-deterministic finite state automata are equally power-
ful, as they each accept precisely regular languages. When considering context-free languages, we see that
non-deterministic pushdown automata are strictly more powerful than deterministic pushdown automata. The
Turing Machine is quite a robust model, in the sense that the standard deterministic model accepts and de-
cides precisely the same languages as the multitape and non-deterministic variants. It should be noted that one
model may actually be more efficient than another. In regards to language acceptance and computability, we
ignore issues of efficiency and complexity. However, the same techniques we use to show that these models are
equally powerful can be leveraged to show that two models of computation are equivalent both with regards
to power and some measure of efficiency. That is, to show that the two models solve the same set of problems
using a comparable amount of resources (e.g., polynomial time). This is particularly important in complexity
theory, but we also leverage these techniques when showing Turing Machines equivalent to other models such
as (but not limited to) the RAM model and the λ-calculus.

We begin by introducing the Multitape Turing Machine.

Definition 123 (Multitape Turing Machine). A k-tape Turing Machine is an extension of the standard de-
terministic Turing Machine in which there are k tapes with infinite memory and a fixed beginning. The input
initially appears on the first tape, starting at the far-left cell. The transition function is the addition difference,
allowing the k-tape Turing Machine to simultaneously read from and write to each of the k-tapes, as well as
move some or all of the tape cells. Formally, the transition function is given below:

δ : Q× Γk → Q× Γk × {L, R, S}k.

The expression:
δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L,R, S, . . . , R)

indicates that the TM is on state qi, reading am from tape m for each m ∈ [k]. Then for each m ∈ [k], the TM
writes bm to the cell in tape m highlighted by its tape head. The mth component in {L, R, S}k indicates that
the mth tape head should move left, right, or remain stationary respectively.

Our first goal is to show that the standard deterministic Turing Machine is equally as powerful as the k-tape
Turing Machine, for any k ∈ N. We need to show that the languages accepted (decided) by deterministic Turing
Machines are exactly those languages accepted (decided) by the multitape variant. The initial approach of
a set containment argument is correct. The details are not as intuitively obvious. Formally, we show that
for any multitape Turing Machine, there exists an deterministic Turing Machine; and for any deterministic
Turing Machine, there exists an equivalent multitape Turing Machine. In other words, we show how one
model simulates the other and vice-versa. This implies that the languages accepted (decided) by one model
are precisely the languages accepted (decided) by the other model.

Theorem 4.1. A language is recursively enumerable (decidable) if and only if some multitape Turing Machine
accepts (decides) it.

Proof. We begin by showing that the multitape Turing Machine model is at least as power as the standard
deterministic Turing Machine model. Clearly, a standard deterministic Turing Machine is a 1-tape Turing
Machine. So every language accepted (decided) by a standard deterministic Turing Machine is also accepted
(decided) by some multitape Turing Machine.

96

Conversely, let M be a multitape Turing Machine with k tapes. We construct a standard determnistic Turing
Machine M ′ to simulate M , which shows that L(M ′) = L(M). As M has k-tapes, it is necessary to represent
the strings on each of the k tapes on a single tape. It is also necessary to represent the placement of each
of the k tape heads of M on the one tape of M ′. This is done by using a special marker. For each symbol
c ∈ Γ(M), we include c and ĉ in Γ′, where ĉ indicates a tape head on M is on the character c. We then have a
special delimiter symbol #, which separates the strings on each of the k tapes. So |Γ(M ′)| = 2|Γ(M)|+1. M ′

simulates M in the following manner.

� M ′ scans the tape from the first delimiter to the last delimiter to determine which symbols are marked
as under the tape heads on M .

� M ′ then evaluates the transition function of M , then makes a second pass along the tape to update the
symbols on the tape.

� If at any point, the tape head of M ′ falls on a delimiter symbol #, M would have reached the end of that
specific tape. So M ′ shifts the string, cell by cell, starting at the current delimiter inclusive. A blank
symbol is then overwritten on the delimiter.

Thus, M ′ simulates M . So any language accepted (decided) by a multitape Turing Machine is accepted
(decided) by a single tape Turing Machine.

Below is an illustration of a multitape Turing Machine an an equivalent single tape Turing Machine.

Remark: If the k-tape Turing Machine takes T steps, then each tape uses at most T+1 cells. So the equivalent
one-tape deterministic Turing Machine constructed in the proof of Theorem 4.1 takes (k · (T + 1))2 = O(T 2)
steps.

We now introduce the non-deterministic Turing Machine. The non-deterministic Turing Machine has a single,
infinite tape with an end at the far-left. Its sole difference with the deterministic Turing Machine is the
transition function.

Definition 124 (Non-Deterministic Turing Machine). A non-deterministic Turing Machine is defined identi-
cally as a standard deterministic Turing Machine, but with the transition function of the form:

δ : Q× Γ → 2Q×Γ×{L,R}

We now show that the deterministic and non-deterministic variants are equally powerful. The proof for this
is by simulation. Before introducing the proof, let’s conceptualize this. Earlier in this section, a graph theory
intuition was introduced for understanding the definition of what it means for a string to be accepted by a
non-deterministic Turing Machine. That definition of string acceptance dealt with the existence of a choice
string such that the non-deterministic Turing Machine would reach the accept state qaccept from the starting

97

state q0. The graph theory analog was that there existed a path for the input string from q0 to qaccept.

So the way a deterministic Turing Machine simulates a non-deterministic Turing Machine is through, essen-
tially, a breadth-first search. More formally, what actually happens is that a deterministic multitape Turing
Machine is used to simulate a non-deterministic Turing Machine. It does this by generating choice strings in
lexicographic order and simulating the non-deterministic Turing Machine on each choice string until the string
is accepted or all the possibilities are exhausted.

Given the non-deterministic Turing Machine has a finite number of transitions, there are a finite number
of choice input strings to generate. Thus, a multitape deterministic Turing Machine will always be able to
determine if an input string is accepted by the non-deterministic Turing Machine. It was already proven that
a multitape Turing Machine can be simulated by a standard deterministic Turing Machine, so it follows that
any language accepted by a non-deterministic Turing Machine can also be accepted by a deterministic Turing
Machine.

Theorem 4.2. A language is recursively enumerable (decidable) if and only if it is accepted (decided) by some
non-deterministic Turing Machine.

Proof. A deterministic Turing Machine is clearly non-deterministic. So it suffices to show that every non-
deterministic Turing Machine has an equivalent deterministic Turing Machine. From Theorem 4.1, it suffices
to construct a multitape Turing Machine equivalent for every non-deterministic Turing Machine. The proof is
by simulation. Let M be a non-deterministic Turing Machine.

We construct a three-tape Turing Machine M ′ to simulate all possibilities. The first tape contains the input
string and is used as a read-only tape. The second tape is used to simulate M , and the third tape is the
enumeration tape in which we enumerate the branches of the non-deterministic Turing Machine. Let:

b = max
q∈Q,a∈Γ

|δM (q, a)|.

The tape alphabet ofM ′ is Γ(M)∪ [b]. On the third tape ofM ′, we enumerate strings over [b]n in lexical order,
where n is the length of the input string. At state i in the computation, we utilize the transition indexed by
the number on the ith cell on the third tape.

Formally, M ′ works as follows:

1. M ′ is started with the input ω on the first tape.

2. We then copy the input string to the second tape and generate 0ω.

3. Simulate M on ω using the choice string on ω. If at any point, the transition specified by the third tape
is undefined (which may occur if too few choices are available), we terminate the simulation of M and
generate the next string in lexical order on the third tape. We then repeat step (3).

4. M ′ accepts (rejects) ω if and only some simulation of M on ω accepts (rejects) ω.

By construction, L(M ′) = L(M), yielding the desired result.

4.3 Turing Machine Encodings

TODO

4.4 Chomsky Heirarchy and Some Decidable Problems

Thus far, we have introduced the Turing Machine as a model of computation and studied it from the perspec-
tive of automata theory. The goal of computability theory is to study the power and limits of computation. In
this section, we explore problems that Turing Machines can effectively solve; that is, decidable languages.

Thus far, we have several classes of languages: regular, contex-free, decidable, and recursively enumerable
languages. We have three relations that are easy to see:

98

1. Every regular language is context-free.

2. Every regular language is decidable.

3. Every decidable language is recursively enumerable.

These relationships are captured by the Chomsky Heirarchy, named for linguist Noam Chomsky. The Chomsky
Heirarchy contains five classes of formal languages, with a strict increasing subset relation between them. Each
class of formal language is characterized by the class of machines deciding them (or equivocally, the class
of grammars generating them). The missing class of language is the set of context-sensitive languages. We
mention them here for completeness, but will not explore them much further. Context-sensitive languages are
accepted by linear bounded automata, which informally are Turing Machines with finite tape heads. It is thus
easy to see that every context-sensitive language is recursively enumerable. In fact, every context-sensitive
language is also decidable. We also note that every context-free language is also context-sensitive. So formally,
we have the following relationships.

(a) Every regular language is context-free.

(b) Every context-free language is context-sensitive.

(c) Every context-sensitive language is decidable.

(d) Every decidable language is recursively enumerable.

In order to see that every regular language is decidable, we simply use a Turing Machine to simulate a finite
state automaton. Given a regular language L, we construct a deterministic Turing Machine to decide L quite
easily. Let D be the DFA accepting L. Without loss of generality, suppose D has precisely one accept state.
We let M be the corresponding Turing Machine, with QM = QD,ΣD = ΣD; and for each ((qi, a), qj) ∈ δD,
we include ((qi, a), (qj , a, L)) ∈ δM . So M simulates D, and L(M) = L. We rephrase this notion with the
following theorem, which will be of use later.

Theorem 4.3. Let ADFA = {⟨D,w⟩ : D is a DFA that accepts w}. ADFA is decidable.

Proof. We construct a Turing Machine M to decide ADFA as follows. On input ⟨D,w⟩, M simulates D on w.
M accepts ⟨D,w⟩ if and only if D accepts w. As every FSM is a decider, it follows that M is also a decider.
So M decides ADFA.

Remark: We similarly define ANFA = {⟨N,w⟩ : N is an NFA that accepts w}. ANFA is decidable. We apply
the NFA to DFA algorithm, then utilize the decider for ADFA.

We use a similar argument to decide if a regular expression recognizes a given string. Using a programmer’s
intuition, we utilize existing algorithms and theory developed in the exposition on regular languages.

Theorem 4.4. Let AREX = {⟨R,w⟩ : R is a regular expression that matches the string w}. AREX is decidable.

Proof. We construct a Turing Machine M to decide AREX as follows. M begins by converting R to an ϵ-NFA
N using Thompson’s Construction Algorithm. M then converts N to an NFA N ′ without ϵ transitions using
the procedure outlined in our exposition on automata theory. From there, M simulates the decider S for ANFA

on ⟨N ′, w⟩ and accepts if and only if S accepts; and rejects if and only if S rejects. So M decides AREX.

We next consider two important problems: (1) Given a DFA D, is L(D) = ∅; and (2) Given two DFAs A and
B, does L(A) = L(B)? Regular languages are decidable; so for every w ∈ Σ∗, some Turing Machine decides
if w is in the corresponding regular language L. However, for other classes of decidable languages (such as
context-sensitive languages), it is undecidable whether the corresponding automaton accepts no string, which
makes testing for language equality an undecidable problem for that class of language. With this in mind, we
proceed with our next results:

Theorem 4.5. Let EDFA = {⟨D⟩ : D is a DFA and L(D) = ∅}. EDFA is decidable.

Proof. We construct a Turing Machine M to decide EDFA as follows. M begins by labeling the start state.
Then while no new states have been marked, we mark any state with an incoming transition from an already
marked state. D accepts some string if and only if some accept state was marked. So M accepts if no accept
state has been reached, and rejects otherwise.

99

We show next that testing for language equality is decidable, provided we have two regular languages. Recall
that L1 = L2 if and only if L1△L2 = ∅. In order to prove this, we leverage closure properties of regular langauges
(and the FSMs constructed in the proofs of these properties) to construct a DFA recognizing L1△L2, then
defer to the decider for EDFA.

Theorem 4.6. Let EQDFA = {⟨A,B⟩ : A,B are DFAs and L(A) = L(B)}. EQDFA is decidable.

Proof. We construct a Turing Machine M to decide EQDFA. Recall that:

L(A)△L(B) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

As regular languages are closed under union, intersection, and complementation, we construct a DFA for C using
the constructions given in the proofs of these closure properties. So L(C) = ∅ if and only if L(A)△L(B) = ∅.
And L(A) = L(B) if and only if EDFA accepts ⟨C⟩. So M accepts ⟨A,B⟩ if and only if EDFA accepts ⟨C⟩, and
M rejects otherwise. So M decides EQDFA.

We now provide analogous results for context-free languages as for regular languages. These results culminate
with the following result: every context-free language is decidable. We will need a couple facts about context-
free languages:

� Every context-free language has a context-free grammar which generates the language.

� Every context-free grammar can be written in Chomsky Normal Form. Any non-empty string ω of length
n generated by the grammar is done so using a derivation of 2n− 1 steps.

We use these facts to decide a language of ordered pairs, with each pair containing a context-free grammar
and a string it generates.

Theorem 4.7. Let ACFG = {⟨G,w⟩ : G is a context-free grammar that generates w}. ACFG is decidable.

Proof. We construct a Turing Machine M as follows. On input ⟨G,w⟩, where G is a context-free grammar and
w is a string, M begins by converting G to an equivalent grammar in Chomsky Normal Form. If n > 0, then
M enumerates all derivations with 2n− 1 steps, where n = |w|. Otherwise, M enumerates all derivations with
a single step. M accepts ⟨G,w⟩ if and only if one such derivation generates w. Otherwise, M rejects ⟨G,w⟩.
So M decides ACFG.

We next show that it is quite easy to decide if L(G) = ∅ for an arbitrary context-free grammar G. The proof of
this next theorem utilizes a dynamic programming algorithm which is modeled after the algorithm to construct
a Huffman encoding tree.

Theorem 4.8. Let ECFG = {⟨G⟩ : G is a context-free grammar and L(G) = ∅}. ECFG is decidable.

Proof. We construct a Turing Machine M , which utilizes a dynamic programming procedure. We begin by
mark each terminal symbol in the grammar G. For the recursive step, we mark a non-terminal symbol A if
there exists a rule A→ x1x2x3 . . . xk where for each i, xi was labeled at some previous iteration. The algorithm
terminates if no additional symbol is marked at the last iteration. L(G) ̸= ∅ if and only if S is marked (as
tracing along the computation yields a derivation from S to some string of terminals). So M accepts G if and
only if S is unmarked, and G rejects otherwise.

We now show that every context-free language is decidable.

Theorem 4.9. Let L be a context-free langauge. L is decidable.

Proof. We construct a Turing Machine M to decide L as follows. Let S be the Turing Machine constructed
in the proof of Theorem 4.7, and let G be a context-free grammar generating L. On input ω, M simulates S
on ⟨G,ω⟩ and accepts ω if and only if S accepts ⟨G,ω⟩. M rejects ω otherwise. So M decides L, as S decides
ACFG.

100

https://en.wikipedia.org/wiki/Huffman_coding

4.5 Undecidability

In the last section, we examined several problems which Turing Machines can decide, or solve. This section
examines the limits of computation as a means to solve problems. This is important for several reasons. First,
problems that cannot be solved need to be simplified to a formulation that is more amenable to computational
approaches. Second, the techniques used in proving languages to be undecidable, including reductions and
diagonalization, appear repeatedly in complexity theory. Lastly, undecidability is an interesting topic in its
own right.

The canonical result in computability theory is the undecidability of the halting problem. Intuitively, no algo-
rithm exists to decide if a Turing Machine halts on an arbitrary input string. While the result seems abstract
and unimportant, the results are actually far reaching. Software engineers seek better ways to determine the
correctness of their programs. The undecidability of the halting problem provides an impossibility result for
software engineers; no such techniques exist to validate arbitrary computer programs.

Recall that both ADFA and ACFG were both decidable. The corresponding language for Turing Machines is
given below:

ATM = {⟨M,w⟩ :M is a Turing Machine that accepts w}.
It turns out that ATM is undecidable. We actually start by showing that the following language undecidable:

Ldiag = {ωi : ωi is the ith string in Σ∗, which is accepted by the ith Turing Machine Mi}.

Ldiag is designed to leverage a diagonalization argument. We note that Turing Machines are representable
as finite strings (just like computer programs), and that the set of finite length strings over an alphabet is
countable. So we can enumerate Turing Machines using N. Similarly, we also enumerate input strings from Σ∗

using N. Before proving Ldiag undecidable, we need the following result.

Theorem 4.10. A language L is decidable if and only if L and L are recursively enumerable.

Proof. Suppose first L is decidable, and let M be a decider for L. As M decides L, M also accepts L. So L is
recursively enumerable. Now defineM to be a Turing Machine that, on input ω, simulatesM on ω. M accepts
(rejects) ω if and only if M rejects (accepts) ω. As M is a decider, M decides L. So L is also recursively
enumerable.

Conversely, suppose L and L are recursively enumerable. Let B and B be Turing Machines that accept L and
L respectively. We construct a Turing Machine K to decide L. K works as follows. On input ω, K simulates
B and B in parallel on ω. As L and L are recursively enumerable, at least one of B or B will halt and accept
ω. If B accepts ω, then so does K. Otherwise, B accepts ω and K rejects ω. So K decides L.

In order to show that Ldiag is undecidable, Theorem 4.10 provides that it suffices to show Ldiag is not recursively
enumerable. This is the meat of the proof for the undecidability of the halting problem. It turns out that Ldiag

is recursively enumerable, which is easy to see.

Theorem 4.11. Ldiag is recursively enumerable.

Proof. We construct an acceptor D for Ldiag which works as follows. On input ωi, D simulates Mi on ωi and
accepts ωi if and only if Mi accepts ωi. So L(D) = Ldiag, and Ldiag is recursively enumerable.

We now show that Ldiag is not recursively enumerable.

Theorem 4.12. Ldiag is not recursively enumerable.

Proof. Suppose to the contrary that Ldiag is recursively enumerable. Let k ∈ N such that the Turing Machine
Mk accepts Ldiag. Suppose ωk ∈ Ldiag. Then Mk accepts ωk, as L(Mk) = Ldiag. However, ωk ∈ Ldiag implies
that Mk does not accept ωk, a contradiction.

Suppose instead ωk ̸∈ Ldiag. Then ωk ̸∈ L(Mk) = Ldiag. Since Mk does not accept ωk, it follows by definition
of Ldiag that ωk ∈ Ldiag, a contradiction. So ωk ∈ Ldiag if and only if ωk ̸∈ Ldiag. So Ldiag is not recursively
enumerable.

Corollary 4.0.1. Ldiag is undecidable.

Proof. This follows immediately from Theorem 4.10, as Ldiag is recursively enumerable, while Ldiag is not.

101

4.6 Reducibility

The goal of a reduction is to transform one problem A into another problem B. If we know how to solve this
second problem B, then this yields a solution for A. Essentially, we transform A into B, solve it in B, then
apply this solution in A. Reductions thus allow us to order problems based on how hard they are. In particular,
if we know that A is undecidable, a reduction immediately implies that B is undecidable. Otherwise, a Turing
Machine to decide B could be used to decide A. Reductions are also a standard tool in complexity theory,
where we transform problems with some bound on resources (such as time or space bounds). In computability
theory, reductions need only be computable. We formalize the notion of a reduction with the following two
definitions.

Definition 125 (Computable Function). A function f : Σ∗ → Σ∗ is a computable function if there exists some
Turing Machine M such that on input ω, M halts with just f(ω) written on the tape.

Definition 126 (Many-to-One Reduction). Let A,B be languages. A many-to-one reduction from A to B is
a computable function f : Σ∗ → Σ∗ such that ω ∈ A if and only if f(ω) ∈ B. We say that A is reducible to B,
denoted A ≤m B, if there exists a many-to-one reduction from A to B.

We deal with reductions in a similar high-level manner as Turing Machines, providing sufficient detail to
indicate how the original problem instances are transformed into instances of the target problem. In order for
reductions to be useful in computability theory, we need an initial undecidable problem. This is the language
Ldiag from the previous section. With the idea of a reduction in mind, we proceed to show that ATM is
undecidable.

Theorem 4.13. ATM is undecidable.

Proof. It suffices to show Ldiag ≤m ATM. The function f : Σ∗ → Σ∗ maps ωi ∈ Ldiag to ⟨Mi, ωi⟩ ∈ ATM.
Any string not in Ldiag is mapped to ϵ under f . As Turing Machines are enumerable, a Turing Machine
can clearly write ⟨Mi, ωi⟩ to the tape when started with ωi. So f is computable. Furthermore, observe that
ωi ∈ Ldiag if and only if ⟨Mi, ωi⟩ ∈ ATM. So f is a reduction from Ldiag to ATM and we conclude that ATM is
undecidable.

With ATM in tow, we prove the undecidability of the halting problem, which is given by:

HTM = {⟨M,w⟩ :M is a Turing Machine that halts on the string w}.

Theorem 4.14. HTM is undecidable.

Proof. It suffices to show that ATM ≤m HTM. Each element of ATM is clearly an element of HTM. So we map
each element of ATM to itself in HTM, and all other strings to ϵ. This map is clearly a reduction, so HTM is
undecidable.

The reductions to show ATM and HTM undecidable have been rather trivial. We will examine some additional
undecidable problems. In particular, the reduction will be from ATM. The idea moving forward is to pick a
desirable solution and return it if and only if a Turing Machine M halts on a string ω. A decider for the target
problem would thus give us a decider for ATM, which is undecidable. We illustrate the concept below.

Theorem 4.15. Let ETM = {⟨M⟩ :M is a Turing Machine s.t. L(M) = ∅}. ETM is undecidable.

Proof. It suffices to show that ATM ≤m ETM. For each instance of ⟨M,ω⟩ ∈ ATM, we construct an instance of
ETM M ′ as follows. On input x ̸= ω, M ′ rejects x. Otherwise, M ′ simulates M on ω. If M accepts (rejects)
ω, then M ′ rejects (accepts) ω. So ⟨M,ω⟩ ∈ ATM implies that M ′ ∈ ETM. So ETM is undecidable.

We use the same idea to show that it is undecidable if a Turing Machine accepts the empty string. Observe
above that our desirable solution for ETM was ∅. Then M ′ accepted the desired solution if and only if the
instance Turing MachineM accepted ω. We conditioned acceptance of the target instance based on the original
problem. In this next problem, the target solution is ϵ, the empty string.

Theorem 4.16. Let LES = {⟨M⟩ :M is a Turing Machine that accepts ϵ}. LES is undecidable.

Proof. We show that ATM ≤m ETM. Let ⟨M,ω⟩ ∈ ATM. We construct an instance of LES, M
′, as follows. On

input x ̸= ϵ, M ′ rejects x. Otherwise, M ′ simulates M on ω. M ′ accepts ϵ if and only if M accepts ω. So
⟨M,ω⟩ ∈ ATM if and only if M ′ ∈ LES. This function is clearly computable, so LES is undecidable.

102

Recall that any regular language is decidable. We may similarly ask if a given language is regular. It turns out
that this new problem is undecidable.

Theorem 4.17. Let LReg = {L : L is regular }. LReg is undecidable.

Proof. We reduce ATM to LReg. Let ⟨M,ω⟩ ∈ ATM. We construct a Turing Machine M ′ such that L(M ′) is
regular if and only if M accepts ω. M ′ works as follows. On input x, M ′ accepts x if it is of the form 0n1n for
some n ∈ N. Otherwise, M ′ simulates M on ω, and accepts x if and only if M accepts ω. So L(M ′) = Σ∗ if
and only if M accepts ω, and L(M ′) = {0n1n : n ∈ N} otherwise which is not regular. Thus, L(M ′) ∈ LReg if
and only if ⟨M,ω⟩ ∈ ATM. So LReg is undecidable.

The common theme in each of these undecidability results is that not every language satisfies the given property.
This leads us to one of the major results in computability theory: Rice’s Theorem. Intuitively, Rice’s Theorem
states that any non-trivial property is undecidable. A property is said to be trivial if it applies to either every
language or no language. We formalize it as follows.

Theorem 4.18 (Rice). Let R be the set of recursively enumerable languages, and let C be a non-empty, proper
subset of R. Then C is undecidable.

Proof. We reduce ATM to C. Without loss of generality, suppose ∅ ∈ C. As C is a proper subset of R, C
is non-empty. Let L ∈ C. Let ⟨M,ω⟩ ∈ ATM. We consturct a Turing Machine M ′ as follows. On input
x, M ′ rejects x if x ̸∈ L. Otherwise, M ′ simulates M on ω. M ′ rejects x if and only if M accepts ω. So
L(M ′) = ∅ ∈ C if and only if ⟨M,ω⟩ ∈ ATM. Otherwise, L(M ′) = L. Thus, C is undecidable.

Remark: Observe that the proof of Rice’s Theorem is a template for the previous undecidability proofs in this
section. Rice’s Theorem generalizes all of our undecidability results and provides an easy test to determine if
a language is undecidable. In short, to show a property undecidable, it suffices to exhibit a language satisfying
said property and a language that does not satisfy said property.

5 Complexity Theory

The goal of Complexity Theory is to classify decidable problems according to the amount of resources required
to solve them. Space and time are the two most common measures of complexity. Time complexity measures
how many computations are required for a computer to solve decide an instance of the problem, with respect
to the instance’s size. Space complexity is analogously defined for the amount of extra space a computer needs
to decide an instance of the problem, with respect to the instance’s size.

In the previous sections, we have discussed various classes of computational machines- finite state automata,
pushdown automata, and Turing Machines; as well as the classes of formal languages they accept. These
automata answer decision problems: given a string ω ∈ Σ∗, does ω belong to some language L? If L is regular,
then a finite state automaton can answer this question. However, if L is only decidable, then the power of a
Turing Machine (or Turing-equivalent model) is required. Formally, we define a decision problem as follows.

Definition 127 (Decision Problem). Let Σ be an alphabet and let L ⊂ Σ∗. We say that the language L is a
decision problem.

The complexity classes P and NP deal with decision problems. That is, they are sets of languages. In the context
of an algorithms course, we abstract to the level of computational problems rather than formal languages. It
is quite easy to formulate a computational decision problem as a language, though.

Example 134. Consider the problem of determining whether a graph G has a Hamiltonian cycle. The
corresponding language would then be:

LHC = {⟨G⟩ : G is a graph that has a Hamiltonian Cycle}.

We would then ask if the string ⟨H⟩ is in LHC . In other words, does H have a Hamiltonian Cycle? Note
that ⟨H⟩ denotes an encoding of the graph H. That means the language LHC contains string-representations
of graphs, such that the graphs contain Hamiltonian Cycles. From a computational standpoint, we represent
graph as finite data structures programatically. Examples include the adjacency matrix, the adjacency list, or
the incidence matrix representations. As computers deal with strings, it is important that our mathematical
objects be encoded as strings.

103

5.1 Time Complexity- P and NP

Time complexity is perhaps the most familiar computational resource measure. We see this as early as our
introductory data structures class. Nesting loops often result inO(n2) runtime, and mergesort takesO(n log(n))
time to run. Junior and senior level data structures and algorithm analysis courses provide more rigorous
frameworks to evaluate the runtime of an algorithm. This section does not focus on these tools. Rather, this
section provides a framework to classify decision problems according to their time complexities. In order to
classify such problems, it suffices to design a correct algorithm with the desired time complexity. This shows
the problem is decidable in the given time complexity. With this in mind, we formalize the notion of time
complexity.

Definition 128. Let T : N → N and let M be a Turing Machine that halts on all inputs. We say that M has
time complexity O(T (n)) if for every n ∈ N, M halts in at most T (n) steps on any input string of length n.
We refer to:

DTIME(T (n)) = {L ⊂ Σ∗ : L is decided by some deterministic TM M in time O(T (n))}.

Remark: DTIME is the first complexity class we have defined. Observe that DTIME is defined based on a
deterministic Turing Machine. Every complexity class must have some underlying model of computation. In
order to measure complexity, it is essential that the computational machine is clearly defined. That is, we
need to know what is running our computer program or algorithm to solve the problem. The formal language
framework provides a notion of what the computer is reading. Intuitively, computers deal with binary strings.
Programmers may work in an Assembly dialect, which varies amongst architectures, or some higher level lan-
guage like Python or Java. In any case, the computer deals with some string representation of the algorithm
as well as the problem.

With the definition of DTIME in tow, we have enough information to begin defining the class P.

Definition 129 (Complexity Class P). The complexity class P is the set of languages that are decidable in
polynomial time. Formally, we define:

P =
⋃
k∈N

DTIME(nk).

Example 135. The Path problem is defined as follows.

LPath = {⟨G, u, v⟩ : G is a graph; u, v ∈ V (G), and G has a path from u to v}.

The Path problem is decidable in polynomial time using an algorithm like breadth-first search or depth-first
search, both of which run in O(|V |2) time. So LPath ∈ P since we have a polynomial time algorithm to decide
LPath.

Example 136. Relative primality is another problem that is decidable in polynomial time. We wish to check
if two positive integers have no common positive factors greater than 1. Formally:

LCoprime = {(a, b) ∈ Z+ × Z+ : gcd(a, b) = 1}.

We have LCoprime ∈ P, as the Euclidean algorithm computes the gcd of two positive integers in O(log(n)) time,
where n = max{a, b}.

Remark: Note that the Path and Coprime problems are shown to be in P using conventional notions of an
algorithm, which include random access. Turing Machines do not allow for random access, so it should raise
an eyebrow about using more abstract notions of an algorithm to place problems into P. The reason we can
do this is because the RAM model of computation is polynomial-time equivalent to the Turing Machine. That
is, if we have a RAM computation that takes T1(n) steps on an input of size n, then a Turing Machine can
simulate this RAM computation in p1(T1(n)) steps where p is some fixed polynomial. Similarly, if a Tur-
ing Machine executes a computation in T2(n) steps where n is the size of the input, then a RAM machine
can simulate the Turing computation in p2(T (n)) steps for some fixed polynomial p2(T (n)). In fact, P can
be equivocally defined using any model of computation that can simulate a Turing Machine in polynomial time.

104

Note that problems in P are considered computationally easy problems. Intuitively, computationally easy
problems are those that can be solved in polynomial time. This does not mean that a problem is easy for
which to develop a solution. Many of the algorithms to place problems in P are quite complex and elegant.
For a long time, the Linear Programming problem was not known to be in P. The common algorithm was the
Simplex procedure, which was developed in 1947 and is still taught in undergraduate and graduate optimiza-
tion classes. In most cases, the Simplex algorithm works quite efficiently, but it does have degenerate cases
resulting in exponential time computations. The Ellipsoid algorithm was developed in 1979, which placed the
Linear Programming problem in P. In fact, Linear Programming is P-Complete, which means that it is one
of the hardest problems in P. We will discuss what constitutes a complete problem later.

We now develop some definitions, which will allow us to define NP. Intuitively, the class NP contains problems
for which correct solutions are easy to verify. The original definition of NP deal with non-deterministic Turing
machines. Formally, the original definition is as follows.

Definition 130 (Complexity Class NP (Original Definition)). A language L ∈ NP if there exists a non-
deterministic Turing machine M and polynomial p such that for any ω ∈ L, M accepts ω in p(|ω|) time.

This definition of NP has since been generalized to utilize verifiers. This generalized definition of NP actually
implies the original definition of NP.

Definition 131 (Verifier). A verifier for a language L is a Turing Machine M that halts on all inputs where:

L = {ω :M(ω, c) = 1 for some string c}.

We refer to the string c as the witness or certificate. M is a polynomial time verifier if it runs in p(|ω|) time
for a fixed polynomial p and every string ω ∈ L. This implies that |c| ≤ p(|ω|).

Definition 132 (Complexity Class NP (Modern Definition)). The complexity class NP is the set of languages
that have polynomial time verifiers.

Intuitively, the class NP contains problems for which correct solutions are easy to verify. Intuitively, we have
a Turing machine M , a string input ω, and the certificate c which provides a proof that ω belongs to L. The
Turing Machine uses c to then verify ω ∈ L. We can show both definitions of NP are equivalent.

Proposition 5.1. A language L is decided by some non-deterministic Turing Machine M which halts in p(|ω|)
steps on all inputs ω, for some fixed polynomial p, if and only if there exists some polynomial time verifier for
L.

Proof. Let L be a language and let p be a polynomial. Suppose first that L is decided by a non-deterministic
Turing Machine M that halts on all inputs ω in p(|ω|) time steps. We construct a polynomial time veri-
fier from M . Let ˆδM (ω) be a complete accepting computation. Let M ′ be a verifier accepting strings in
Σ∗ × (Q(M))∗. The verifier M ′ simulates M on ω visiting the sequence of states specified by (Q(M))∗. M ′

accepts ⟨ω, ˆδM (ω)⟩ if and only if M accepts ω using the computation ˆδM (ω). As M decides L in polynomial
time,M ′ halts in polynomial time and ˆδM (ω) is a certificate for ω. Thus,M ′ is a polynomial time verifier for L.

Conversely, let K be a polynomial time verifier for L. We construct a non-deterministic Turing Machine K ′

to accept L. On the input string ω, K ′ guesses a certificate C and simulates M on ⟨ω, c⟩. K ′ accepts ω if and
only if K accepts ⟨ω, c⟩. Since K is a polynomial time verifier, K ′ will halt in polynomial time on all inputs
and ω ∈ L(K ′) if and only if there exists some certificate c on which K accepts ⟨ω, c⟩. So L = L(K ′) and so
K ′ is a non-deterministic Turing Machine accepting L.

Remark: The verifier definition of NP (see Definition 132) is of particular importance in areas such as inter-
active proofs and communication complexity.

We now develop some intuition about the class NP. In order to show a problem is in NP, we take an instance and
provide a certificate, then construct a verifier. Just like with P, it suffices to provide a high level algorithm to
verify an input and certificate pair due to the fact that our RAM computations are polynomial time equivalent
to computations on a Turing machine.

105

Example 137. The Hamiltonian Path problem belongs to the class NP. Formally, we have:

LHP = {⟨G⟩ : G is a graph that has a Hamiltonian Path }.

Our instance is clearly ⟨G⟩, a string encoding of a graph. A viable certificate is a sequence of vertices that
form a Hamiltonian path in G. We then check that the consecutive vertices in the sequence are adjacent, and
that each vertex in the graph is included precisely once in the sequence. This algorithm takes O(|V |) time to
verify the certificate, so LHP ∈ NP.

Example 138. Deciding if a positive integer is composite is also in NP. Recall that a composite integer n > 1
can be written as n = ab where a, b ∈ Z+ and 1 < a, b < n. That is, n is not prime. Formally:

LComposite = {n ∈ Z+ : ∃a, b ∈ [n− 1] s.t. n = ab}.

Our instance is n ∈ Z+ and a viable certificate is a sequence of positive integers a1, . . . , ak such that each
ai ∈ [n− 1] and

∏k
i=1 ai = n. It takes O(k) time to verify that the certificate is a valid factorization of n. As

k < n, we have a clear polynomial time algorithm to verify an integer is composite given a certificate.

We now arrive at the P = NP problem. Intuitively, the P = NP problem asks if every decision problem that can
be easily verified can also be easily solved. It is straight-forward to show that P ⊂ NP. It remains open as to
whether NP ⊂ P.

Proposition 5.2. P ⊂ NP.

Proof. Let L ∈ P and let M be a deterministic, polynomial time Turing Machine that decides L. We construct
a polynomial time verifier M ′ for L as follows. Let ω ∈ Σ∗. On input ⟨ω, 0⟩, M ′ simulates M on ω ignoring
the certificate. M ′ accepts ⟨ω, 0⟩ if and only if M accepts ω. Since M decides L in polynomial time, M ′ is
thus a polynomial time verifier for L. So L ∈ NP.

5.2 NP-Completeness

The P = NP problem has been introduced at a superficial level- are problems whose solutions can be verified
easily also easy to solve? In some cases, the answer is yes- for the problems in P. In general, this is unknown.
However, it is widely believed that P ̸= NP. In this section, the notion of NP-Completeness will be introduced.
NP-Complete problems are the hardest problems in NP and are widely believed to be intractible. We begin with
the notion of a reduction.

Definition 133 (Polynomial Time Computable Function). A function f : Σ∗ → Σ∗ is a polynomial time
computable function if some polynomial time TM M exists that halts with just f(w) on the tape when started
on w.

Definition 134 (Polynomial Time Reducible). Let A,B ⊂ Σ∗. We say that A is polynomial time reducible
to B, which is denoted A ≤p B if there exists a polynomial time computable function f : Σ∗ → Σ∗ such that
ω ∈ A if and only if f(ω) ∈ B.

The notion of reducibility provides a partial order on computational problems with respect to hardness. That
is, suppose A and B are problems such that A ≤p B. Then an algorithm to solve B can be used to solve A.
Suppose we have the corresponding polynomial time reduction f : Σ∗ → Σ∗ to reduce A to B. Formally, we
take an input ω ∈ Σ∗ and transform it into f(ω). We use a decider for B to decide if f(ω) ∈ B. As ω ∈ A if
and only if f(ω) ∈ B, we have an algorithm to decide if ω ∈ A. This brings us to the definition of NP-Hard.

Definition 135 (NP-Hard). A problem A is NP-Hard if for every L ∈ NP, L ≤p A.

Definition 136 (NP-Complete). A language L is NP-Complete if L ∈ NP and L is NP-Hard.

Remark: Obseve that every NP-Complete problem is a decision problem. In general, NP-Hard problems
need not be decision problems. Optimization and enumeration problems are common examples of NP-Hard
problems. Note as well that any two NP-Complete languages are polynomial time reducible to each other, and
so are equally hard. That is, a solution to one NP-Complete language is a solution to all NP-Complete languages.
This leads to the following result.

Theorem 5.1. Let L be an NP-Complete language. If L ∈ P, then P = NP.

106

Proof. Proposition 5.2 already provides that P ⊂ NP. So it suffices to show that NP ⊂ P. Let L ∈ NP and let
K be an NP-Complete language that is also in P. Let f : Σ∗ → Σ∗ be a polynomial time reduction from L to
K, and let M be a polynomial time decider for K. Let ω ∈ L. We transform ω into f(ω) and run M on f(ω).
From the reduction, we have ω ∈ L if and only if f(w) ∈ K accepts f(ω). Since M is a decider, we have a
polynomial time decider for L. Thus, L ∈ P and we have P = NP.

In order to show that a language L is NP-Complete, it must be shown that L ∈ NP and for every language
K ∈ NP, K ≤ L. Constructing a polynomial-time reductions from each language in NP to the target language L
is not easy. However, if we already have an NP-Complete problem J , it suffices to show J ≤p L, which shows L is
NP-Hard. Of course, in order to use this technique, it is necessary to have an NP-Complete language with which
to begin. The Cook-Levin Theorem provides a nice starting point with the Boolean Satisfiability problem,
better known as SAT. There are several variations on the Cook-Levin Theorem. One variation restricts to
CNF-SAT, in which the Boolean formulas are in Conjunctive Normal Form. Another version shows that the
problem of deiding if a combinatorial circuit is satisfiable, better known as Circuit SAT, is NP-Complete. We
begin with a some definitions.

Definition 137 (Boolean Satisfiability Problem (SAT)).

� Instance: Let ϕ : {0, 1}n → {0, 1} be a Boolean function, restricted to the operations of AND, OR, and
NOT.

� Decision: Does there exist an input vector x ∈ {0, 1}n such that ϕ(x) = 1?

Example 139. The Boolean function ϕ(x1, x2, x3) = x1 ∨ x2 ∧ x3 is an instance of SAT.

We next introduce the combinatorial circuit.

Definition 138 (Combinatorial Circuit). A Combinatorial Circuit is a directed acyclic graph where the
vertices are labeled with a Boolean operation or variable (input). Each operation computes a Boolean function
f : {0, 1}n → {0, 1}m, with the vertex having n incoming arcs, and m outgoing arcs.

Example 140. Consider the following combinatorial circuit. Here, x and y are the input vertices which feed
into AND gates and NOT gates. The white vertices are the NOT gates, and the vertices labeled ∧ are the
AND gates. Each AND gate then feeds into an OR gate, which produces the final output of 0 or 1.

With this in mind, we define Circuit SAT, our first NP-Complete language.

Definition 139 (Circuit SAT).

� Instance: Let C be a combinatorial circuit with a single output.

� Decision: Does there exist an input vector x ∈ {0, 1}n such that C(x) = 1?

Theorem 5.2 (Cook-Levin). Circuit SAT is NP-Complete.

The proof of the Cook-Levin Theorem is quite involved. We sketch the ideas here. In order to show Circuit

SAT is in NP, it is shown that a Turing Machine can simulate a combinatorial circuit taking T steps in p(T)
steps for a fixed polynomial p. This enables a verifier to be constructed for a given combinatorial circuit.
In order to show that Circuit SAT is NP-Hard, it is shown that any Turing Machine can be simulated by a

107

combinatorial circuit with a polynomial time transformation. Since NP is the set of languages with polynomial
time verifiers, this shows that each verifier can be transformed into a combinatorial circuit with a polynomial
time computation. So Circuit SAT is NP-Complete.

With Circuit SAT in tow, we can begin proving other languages are NP-Complete, starting with CNF-SAT
which we introduce below. Note that we could have started with any NP-Complete problem. Circuit SAT

happened to be proven NP-Complete without an explicit reduction from another NP-Complete problem; hence
out choice of it.

Definition 140 (Clause). A Clause is a Boolean function ϕ : {0, 1}n → {0, 1} where ϕ is written as consists
of variables or their negations, all added together (where addition is the OR operation).

Definition 141 (Conjunctive Normal Form). A Boolean function ϕ : {0, 1}n → {0, 1} is in Conjunctive Normal
Form if ϕ = C1 ∧ C2 ∧ . . . Ck, where each Ci is a clause.

Definition 142 (CNF-SAT).

� Instance: A Boolean function ϕ : {0, 1}n → {0, 1} in Conjunctive Normal Form.

� Decision: Does there exist an input vector x ∈ {0, 1}n such that ϕ(x) = 1?

Example 141. The Boolean function ϕ(x1, x2, x3) = (x1 ∨ x2) ∧ (x2 ∨ x3) is in Conjunctive Normal Form.

Theorem 5.3. CNF-SAT is NP-Complete.

Proof. In order to show CNF-SAT is NP-Complete, we show that CNF-SAT is in NP and CNF-SAT is NP-Hard.

� Claim 1: CNF-SAT is in NP.

Proof. In order to show CNF-SAT is in NP, it suffices to exhibit a polynomial time verification algorithm.
Let ϕ : {0, 1}n → {0, 1} be a Boolean function with k literals (either a variable or its negation). Let
x ∈ {0, 1}n such that ϕ(x) = 1. We simply evaluate ϕ(x), which takes O(k) time. So CNF-SAT is in
NP.

� Claim 2: CNF-SAT is NP-Hard.

Proof. We show Circuit SAT ≤p CNF-SAT. Let C be a combinatorial circuit. We convert C to a Boolean
function as follows. For each vertex v of C, we construct a Boolean function ϕ in Conjunctive Normal
Form as follows.

– If v is an input for C, then construct the literal xv.

– If v is the NOT operation with input xk, we create the variable xv and include the following clauses
in ϕ: (xv ∨ xk) and (xv ∨ xk). Thus, in order for ϕ to be satisfiable, it is necessary that xv = xk.

– If v is the OR operation with inputs xi, xj , we create the variable xv and include the following
clauses in ϕ: (xv ∨ xi), (xv ∨ xj), (xi ∨ xi ∨ xj). Thus, in order for ϕ to be satisfiable, it is necessary
that xv = 0 if and only if xi = xj = 0, which realizes the OR operation from C.

– If v is the AND operation with inputs xi, xj , we create the variable xv and include the following
clauses in ϕ: (xv ∨ xi), (xv ∨ xj), (xv ∨ xi ∨ xj). Thus, in order for ϕ to be satisfiable, it is necessary
that xv = 1 if and only if xi = xj = 1, which realizes the AND operation from C.

– If v is the output vertex, we construct the variable xv and add it to ϕ.

There are at most 9|V | literals in ϕ, where |V | is the number of vertices in C. So this construction occurs
in polynomial time. It suffices to show that C is satisfiable if and only if ϕ is satisfiable. Suppose first C
is satisfiable. Let x ∈ {0, 1}n be a satisfying configuration for C. For each logic gate vertex v, set xv to
be the resultant of that operation on the inputs. By the analysis during the construction of ϕ, we have
that ϕ is satisfiable. Conversely, suppose ϕ is satisfiable with input configuration y ∈ {0, 1}k where k is
the number of clauses. The first n elements of y, (y1, . . . , yn) corresponding to the input vertices of C
form a satisfying configuration for C. So CNF-SAT is NP-Hard.

108

We now reduce CNF-SAT to the general SAT problem to show SAT is NP-Complete.

Theorem 5.4. SAT is NP-Complete.

Proof. The procedure to show CNF-SAT ∈ NP did not rely on the fact that the Boolean functions were in
Conjunctive Normal Form. So this same procedure also suffices to show SAT is in NP. As CNF-SAT is a subset
of SAT, the inclusion map f : CNF-SAT → SAT sending f(ϕ) = ϕ is a polynomial time reduction from CNF-SAT

to SAT. So SAT is NP-Hard. Thus, SAT is NP-Complete.

From CNF-SAT, there is an easy reduction to the Clique problem.

Definition 143 (Clique).

� Instance: Let G be a graph and k ∈ N.

� Decision: Does G contain a complete subgraph with k vertices?

Theorem 5.5. Clique is NP-Complete.

Proof. We show that Clique is in NP and that Clique is NP-Hard.

� Claim 1: Clique is in NP.

Proof. Let (G, k) be an instance of Clique. Let S ⊂ V (G) be a set of vertices that induce a complete
subgraph on k vertices. We check that all

(
k
2

)
edges are present in G[S], the subgraph of G induced by

S. This takes O(n2) time, which is polynomial. So Clique is in NP.

� Claim 2: Clique is NP-Hard.

Proof. It suffices to show CNF-SAT ≤p Clique. Let ϕ be an instance of CNF-SAT with k-clauses. We
construct an instance of Clique as follows. Let G be the graph we construct. Each occurrence of a
variable in ϕ corresponds to a vertex in G. We add all possible edges except if: (1) two vertices belong
to the same clause; or (2) if two vertices are contradictory. If the length of ϕ is n, then this construction
takes O(n2) time which is polynomial time. It suffices to show that ϕ is satisfiable if and only if there
exists a k-clique in G.

Suppose first ϕ is satisfiable. Let x be a satisfying configuration for ϕ. As ϕ is in Conjunctive Normal
Form, there exists a literal in each clause that evaluates to 1. We select one such literal from each clause.
As none of these literals are contradictory, the corresponding vertices in G induce a k-Clique.

Conversely, suppose G has a k-clique. Let S ⊂ V (G) be a set of vertices that induce a k-Clique in
G. If v ∈ S corresponds to a variable xi, then we set xi = 1. Otherwise, v corresponds to a variable’s
negation and we set xi = 0. Any variable not corresponding to a vertex in the set is set to 0. Recall
that each vertex in S corresponds to a literal from each clause and the literals are not contradictory. As
ϕ is in Conjunctive Normal Form, we have a satisfying configuration for ϕ. We conclude that Clique is
NP-Hard.

The Clique problem gives us two additional NP-Complete problems. The first problem is the Independent

Set problem, and the second is the Subgraph Isomorphism problem. The Subgraph Isomorphism problem is
formally:

Definition 144 (Subgraph Isomorphism).

LSI = {⟨G,H⟩ : G,H are graphs, and H ⊂ G}.

109

The inclusion map from Clique to Subgraph Isomorphism provides that Subgraph Isomorphism is NP-Hard.
It is quite easy to verify that H is a subgraph of G given an isomorphism.

An independent set is the complement of a Clique. Formally, we have the following.

Definition 145 (Independent Set). Let G be a graph. An independent set is a set S ⊂ V (G) such that for
any i, j ∈ S, ij ̸∈ E(G). That is, all vertices of S are pairwise non-adjacent in G.

This leads to the Independent Set problem.

Definition 146 (Independent Set (Problem)).

� Instance: Let G be a graph and k ∈ N.

� Decision: Does G have an independent set with k vertices?

Theorem 5.6. Independent Set is NP-Complete.

Proof. We show that Independent Set is in NP, and that Independent Set is NP-Hard.

� Claim 1: Independent Set is in NP.

Proof. Let ⟨G, k⟩ be an instance of Independent Set and let S ⊂ V (G) be an independent set of order
k. S serves as our certificate. We check that for each distinct i, j ∈ S, ij ̸∈ E(G). This check takes

(
k
2

)
steps, which is O(|V |2) time. So Independent Set is in NP.

� Claim 2: Independent Set is NP-Hard.

Proof. We show Clique ≤p Independent Set. Let ⟨G, k⟩ be an instance of Clique. Let G be the
complement of G, in which V (G) = V (G) and E(G) = {ij : i, j ∈ V (G), ij ̸∈ E(G)}. This construction
takes O(|V |2) time. So this construction is in polynomial time. As an independent set is the complement
of a Clique, G has a k-Clique if and only if G has an independent set with k-vertices. So Independent

Set is NP-Hard.

We provide one more NP-Hardness proof to illustrate that not all NP-Hard problems are in NP. We introduce
the Hamiltonian Cycle and TSP-OPT problems.

Definition 147. Hamiltonian Cycle

� Instance: Let G(V,E) be a graph.

� Decision: Does G contain a cycle visiting every vertex in G?

And the Traveling Salesman optimization problem is defined as follows.

Definition 148. TSP-OPT

� Instance: Let G(V,E,W) be a weighted graph where W : E → R+ is the weight function.

� Solution: Find the minimum cost Hamiltonian Cycle in G.

We first note that Hamiltonian Cycle is NP-Complete, though we won’t prove this. In order to show TSP-OPT

is NP-Hard, we reduce from Hamiltonian Cycle.

Theorem 5.7. TSP-OPT is NP-Hard.

Proof. We show Hamiltonian Cycle ≤p TSP-OPT. Let G be a graph with n vertices and a Hamiltonian cycle
C. We construct a weighted Kn as follows. Each edge in Kn corresponding to C is weighted 0. All other edges
are weighted 1. So any minimum weight Hamiltonian cycle in Kn has weight at least 0. We show that G has
a Hamiltonian cycle if and only if the minimum weight Hamiltonian cycle in the Kn has weight 0. Suppose
first G has a Hamiltonian cycle C. We trace along C in Kn to obtain a Hamiltonian cycle of weight 0 in
Kn. Conversely, suppose Kn has a Hamiltonian cycle of weight 0. By construction, this corresponds to the
Hamiltonian cycle C in G. We conclude that Hamiltonian Cycle ≤p TSP-OPT, so TSP-OPT is NP-Hard.

110

5.3 More on P and P-Completeness

In this section, we explore the complexity class P as well as P-Completeness. Aside from containing languages
that are decidable in polynomial time, P is important with respect to parallel computation. Just as NP-Hard
problems are difficult to solve using a sequential model of computation, P-Hard problems are difficult to solve
in parallel. We omit exposition on parallel computation. Rather, there are two big takeaways. The first is
that many NP-Complete languages have subsets which are easily decidable. The second important takeaway is
a clear understanding of P-Completeness.

We begin with the 2-SAT problem.

Definition 149 (k-CNF-SAT).

� Instance: A Boolean function ϕ : {0, 1}n → {0, 1} in Conjunctive Normal Form, where each clause has
precisely k literals.

� Decision: Does there exist an input vector x ∈ {0, 1}n such that ϕ(x) = 1?

It is a well known fact that k-CNF-SAT is NP-Complete for every k ≥ 3. However, 2-CNF-SAT is actually in P.
One proof of this is by a reduction to another problem in P: the Strongly Connected Component problem.
We can decide the Strongly Connected Component problem using Tarjan’s Algorithm, an O(|V |+ |E|) time
algorithm. We define the Strongly Connected Component problem formally.

Definition 150 (Strongly Connected Component (SCC)).

� Instance: A directed graph G(V,E).

� Decision: Do there exist vertices i, j such that there are directed i→ j and j → i paths in G?

Theorem 5.8. 2-CNF-SAT is in P.

Proof. We show 2-CNF-SAT ≤p SCC. We begin by constructing the implication graph G, which is a directed
graph. The vertices of G are the components of x and their negations, yielding 2n vertices in total. For each
clause in C (xi ∨ xj), add directed edges (¬xi, xj), (¬xj , xi). (So for example, if a clause contained (¬x2 ∨ x3),
the edges added to G would be (x2, x3), (¬x3,¬x2).) The reduction to SCC looks at the implication graph to
determine if there is a component xi such that there is a directed path xi to ¬xi, and a directed path ¬xitoxi.
Notice that there are at most

(
n
2

)
clauses to examine and so at most

(
2n
2

)
edges to add to G, so the reduction

is polynomial in time.

So we need to prove a couple facts.

� If there exists an a→ b directed path in G, then there exists a directed ¬b→ ¬a path in G. We will use
this fact to justify the existence of a strongly connected component if there is a directed xi → ¬xi.

� C is satisfiable if and only if there is no strongly connected component in G containing both a variable
and its negation. This will substantiate the validity of the reduction.

We proceed with proving these claims:

� Claim 1: If there exists a directed a→ b path in G, then there exists a directed ¬b→ ¬a path in G.

Proof. Suppose there exists an a→ b directed path in G. By construction, for each edge (c, d) ∈ G, there
exists an edge (d, c). So given the a → b directed path: a → p1 → ... → pk → b, there exist directed
edges in G: (¬b,¬pk), ..., (¬p1,¬a), yielding a directed ¬b→ ¬a path, as claimed.

� Claim 2: C is satisfiable if and only if there is no strongly connected component in G.

111

Proof. It will first be shown that if C is satisfiable, then there is no strongly connected component in
G. This will be done by contradiction. Let x be a satisfying configuration of C, and let xi such that
there is a strongly connected component including xi and ¬xi. Let xi → p1 → ... → pn → ¬xi be the
directed xi → ¬xi path in G. Suppose first xi = 1. By construction, the edges (¬xi, p1), (¬pi, pi+1) for
each i = 1, ..., n − 1; and (¬pn,¬xn) are in G. And so for each i = 1, ..., n, pi must be 1 to satisfy the
corresponding clause in C. However, since ¬xi is 0, pn must be 0 to satisfy (¬pn,¬xn), a contradiction.
By similar analysis, xi cannot be 0 either. And so C is unsatisfiable. Thus, if C is satisfiable, there is no
strongly connected component containing both xi and ¬xi.
Now suppose there is no strongly connected component in G. It will be shown that C is satisfiable by
contradiction. Suppose there are no xi ∈ x such that there exists a directed xi → ¬xi path. For each
unmarked vertex v ∈ V (G) such that no v → ¬v path exists, mark v as 1. Now mark each neighbor
of v as 1, and the negations of each marked variable as 0. Repeat this process until all vertices have
been marked. By finiteness of the graph, this process terminates. Since there are no strongly connected
components in G, all vertices will be marked. As C is unsatisfiable, let i, j ∈ {1, ..., n} such i ̸= j and
that there exists directed xi → xj and xi → ¬xj paths. So xi implies both xj and ¬xj , which is a
fallacy. By construction of G, there must exist a ¬xj → ¬xi directed path in G, which implies that G
has a strongly connected component. However, G has no strongly connected component by assumption,
a contradiction.

Thus, we conclude C is satisfiable if and only if there exists no strongly connected component in G,
proving Claim 2.

As 2-CNF-SAT ≤p SCC, it follows that 2-CNF-SAT is in P.

Another example of an NP-Complete problem that has a subset in P is the Hamiltonian Cycle problem. Con-
sider the subset {⟨Cn⟩ : n ≥ 3}. It is easy to check if a graph is a cycle; and hence, has a Hamiltonian cycle.

We now introduce the notion of a P-Hard problem. A P-Hard problem is defined similarly as an NP-Hard
problem, with the exception of the fact that the reductions are bounded in space rather than time. Formally,
the reductions have to be computable with an additional logarithmic amount of space based on the input
string. In fact, a log-space computation is necessarily polynomial time. We will prove this when we discuss
the complexity class PSPACE and space complexity.

Definition 151 (Log-Space Computable Function). A function f : Σ∗ → Σ∗ is a log-space computable function
if some TM M exists that halts with just f(w) on the tape when started on w, and uses at most O(log(|ω|))
additional space.

Definition 152 (Log-Space Reducible). Let A,B be languages. We say that A is log-space reducible to B,
denoted A ≤ℓ B, if there exists a log-space computable function f : Σ∗ → Σ∗ such that ω ∈ A if and only if
f(ω) ∈ B.

Definition 153 (P-Hard). A problem K is P-Hard if for every L ∈ P, L ≤ℓ K.

And so we now define P-Complete analogously to NP-Complete.

Definition 154 (P-Complete). A language L is P-Complete if L ∈ P and L is P-Hard.

The proof of the Cook-Levin Theorem provides us a first P-Complete problem: Circuit Value. The Circuit
SAT problem takes a combinatorial circuit and asks if it is satisfiable. The Circuit Value problem takes
a combinatorial circuit and an input vector as the instance, and the decision problem is if the input vector
satisfies the circuit.

Definition 155 (Circuit Value (CV)).

� Instance: Let C be a combinatorial circuit computing a function ϕ : {0, 1}n → {0, 1}, and let x ∈ {0, 1}n.

� Decision: Is C(x) = 1?

112

Theorem 5.9. Circuit Value is P-Complete.

With Circuit Value in mind, we prove another P-Complete problem: Monotone Circuit Value. The differ-
ence between Circuit Value and Monotone Circuit Value is that we restrict to the operations of {AND,OR}
in Monotone Circuit Value. So in order to prove Monotone Circuit Value, we flush the negations down to
the inputs using DeMorgan’s Law. We define Monotone Circuit Value formally below.

Definition 156 (Monotone Circuit Value (MCV)).

� Instance: Let C be a combinatorial circuit in which only AND and OR gates are used, and let ϕ :
{0, 1}n → {0, 1} be the function C computes. Let x ∈ {0, 1}n.

� Decision: Is ϕ(x) = 1?

In order to prove MCV is P-Complete, we need a few important facts:

� All Boolean functions f : {0, 1}n → {0, 1}m can be computed using the operations And, Or, and Not.

� All Boolean functions can be computed using operations equivalent to And, Or, and Not.

� All logical circuits can be written as straight-line programs. That is, we have only variable assignments
and arithmetic being performed. There are no loops, conditionals, or control structures of any kind.

We begin by sketching the proof that MCV is P-Complete, so the ideas are clear. Since MCV is a subset of CV (we
take circuits without the NOT operation, which are also instances of CV), MCV is in P. To show MCV is P-Hard,
we show CV ≤ℓ MCV. That is, for each instance of CV, a corresponding instance of MCV will be constructed.
This is difficult though, as it is necessary to get rid of the Not operations from CV. We do this by flushing the
Not operations down each layer of the circuit using DeMorgan’s Law.

We then construct Dual-Rail Logic (DRL) circuits, where each variable xi from x in the CV instance is repre-
sented as (xi,¬xi) in the MCV instance. So any negations we may want are constructed up-front, so the NOT

operation becomes unnecessary. The DRL operations are defined as follows:

� DRL-And: (x,¬x) ∧ (y,¬y) = (x ∧ y,¬(x ∧ y)) = (x ∧ y,¬x ∨ ¬y)

� DRL-Or: (x,¬x) ∨ (y,¬y) = (x ∨ y,¬(x ∨ y)) = (x ∨ y,¬x ∧ ¬y)

� DRL-Not: ¬(x,¬x) is given just by twisting the wires, sending x and ¬x in opposite directions.

Since the Not operation is given upfront in the variable declarations, the DRL operations are all realizable over
the monotone basis of {And, Or}. DRL is also equally as powerful as the basis {And, Or, Not}. So any Boolean
function can be computed with DRL Circuits.

We now formally prove MCV is P-Complete.

Theorem 5.10. Monotone Circuit Value is P-Complete.

Proof. In order to show MCV is P-Complete, we show that MCV is in P and every problem in P is log-space
reducible to MCV (ie., MCV is P-Hard). As MCV is a subset of CV and CV is in P, it follows that MCV is in P.

To show MCV is P-Hard, we show CV ≤ℓ MCV. Let (C, x) be an instance of CV where C is the circuit over the
basis {And, Or, Not} and x is the input sequence. We construct C ′ over the monotone basis {And, Or} from C,
by rewriting C as a dual-rail circuit. Let P (C) be the straight-line program representing C. Let P ′ be the
straight-line program used to construct C ′. For each line n in P (C), let this instruction be line 2n in P ′. Line
2n+ 1 in P ′ corresponds to the negation of line n in P (C).

The Not operation in P (C) is realized in P ′ by twisting the wires. That is, the step (2k = ¬2i) is realized
by the steps (2k = 2i + 1) and (2k + 1 = 2i). The And operation in P (C) (2k = 2i ∧ 2j) is replaced by the
steps (2k = 2i ∧ 2j) and (2k + 1 = (2i+ 1) ∨ (2j + 1)). Finally, the Or operation (2k = 2i ∨ 2j) is realized by
(2k = 2i ∨ 2j) and (2k + 1 = (2i+ 1) ∧ (2j + 1)). And so P (C) = P ′ for all inputs. So P (C) = 1 if and only if
P ′ = 1, and P (C) = 0 if and only if P ′ = 0. So the reduction is valid.

113

http://en.wikipedia.org/wiki/De_Morgan%27s_laws

It now suffices to argue the reduction takes a logarithmic amount of space. Generating P ′ from P (C) can be
done using a counter variable. So for each step i in P (C), we perform operations at lines 2i and 2i+1 in P ′. So if
there are n steps in P (C), we need log2(⌈2n+1⌉) bits, which grows asymptotically with c(log2(2)+ log2(n)) =
c(1 + log2(n)) for some integer constant c > 1. So the amount of space required is O(log(n)). And so we
conclude that MCV is P-Complete.

5.4 Closure Properties of NP and P

TODO

5.5 Structural Proofs for NP and P

TODO

5.6 Ladner’s Theorem

The weak version of Ladner’s Theorem states that if P ̸= NP, then there exists a problem L ∈ NP \ P such that
L ̸∈ NP-Complete. We refer to the set NP \ P as NP-Intermediate. The consequence of Ladner’s Theorem is that
finding an NP-Intermediate language would settle the P = NP problem, providing a separation. Ladner’s Theo-
rem can be strengthened to provide an infinite strict heirarchy of NP-Intermediate languages. In this section,
we provide Ladner’s original proof of the weak Ladner Theorem, as well as the stronger version of Ladner’s
Theorem. Additionally, we provide Russell Impagliazzo’s proof of the weak version of Ladner’s Theorem.

Ladner proved the weak version of Ladner’s theorem as follows. Define the language:

L := {x ∈ SAT : f(|x|) is even },

where f is a function we will construct later. Here, L is our target NP-Intermediate language. The goal is to
“blow holes” in L, so that L is not NP-Complete, while also ensuring L is not “easy enough” to be in P. We
accomplish this by diagonalizing against polynomial time reductions, as well as polynomial time deciders. The
trick is to ensure that f is computable in polynomial time, which ensures that L ∈ NP.

In order to accomplish this, f tracks the given stage. At even-indexed stages (i.e., f(n) = 2i), we diagonalize
against the ith polynomial time decider. While at odd-indexed stages (i.e., f(n) = 2i + 1), we diagonalize
against polynomial time reductions from SAT to L. That is, we want that SAT ̸≤p L. As SAT is NP-Complete,
this ensures that L is not NP-Complete.

We now proceed with the formal proof.

Theorem 5.11 (Ladner (Weak), 1975). If P ̸= NP, then there exists a language L ∈ NP \ P, such that L ̸∈ NP-
Complete.

Proof. Define:
L := {x ∈ SAT : f(|x|) is even }.

Let (Mi)i∈Z+ be an enumeration of polynomial-time Turing machines, which enumerates the languages in P.
Let (Fi)i∈Z+ be an enumeration of polynomial time Turing Machines without restriction to their output lengths.
We note that (Fi)i∈Z+ includes reductions to SAT.

Now let MSAT be a decider for SAT. We now define f recursively as follows. First, define f(0) = f(1) = 2. We
associate f with the Turing Machine Mf that computes it. On input 1n (with n > 1), Mf proceeds in two
stages, each lasting exactly n steps. During the first stage, Mf computes f(0), f(1), . . ., until it runs out of
time. Suppose the last value Mf computed at the first stage was f(x) = k. At the next stage, the output of
Mf will either be k or k + 1, to be determined in the second stage.

In the second stage, we have one of two cases:

114

� Case 1: Suppose that k = 2i. Here, we diagonalize against the ith language L(Mi) in P as follows. The
goal is to find a string z ∈ Σ∗ such that z ∈ (L(Mi)△L). We enumerate such strings z in lexicographic
order, and then computing Mi(z),MSAT(z), and f(|z|) for all such strings. Note that by definition of L,
we must compute f(|z|) to ensure that f(|z|) is even. If such a string z is found in the allotted time (n
steps), then Mf outputs k+ 1 (so Mf can proceed to diagonalize against polynomial time reductions on
the next iteration). Otherwise, Mf outputs k (as we have not successfully diagonalized against Mi yet
and need to do so on the next iteration).

� Case 2: Suppose that k = 2i− 1. Here, we diagonalize against polynomial-time computable functions.
In this case, Mf searches for a string z ∈ Σ∗ such that Fi is an incorrect Karp reduction on z. That is,
either:

– z ∈ SAT and Fi(z) ̸∈ L; or

– z ̸∈ SAT and Fi(z) ∈ L.

We accomplish this by computing Fi(z),MSAT(z), MSAT(Fi(z)), and f(|Fi(z)|). Here, we use clocking to
ensure that MSAT is not taking too long. If such a string is found in the allotted time, then the output of
Mf is k + 1. Otherwise, Mf outputs k.

Claim: L ̸∈ P.

Proof. Suppose to the contrary that L ∈ P. Let Mi be a TM that decides L. By Case 1 in the second stage
of the construction of Mf , no string z is found satisfying z ∈ L and z ̸∈ L(Mi). Thus, f(n) is even for all but
finitely many n. Thus, L and SAT coincide for all but finitely many strings. It follows that SAT is decidable
in polynomial time (decide if a string is in L; if not, we only have finitely many cases to check). So SAT ∈ P,
contradicting the assumption that P ̸= NP.

Claim: L ̸∈ NP-Complete.

Proof. Suppose to the contrary that L is NP-Complete. Then there is a polynomial time reduction Fi from SAT

to L. So f(n) will be even for only finitely many n, which implies that L is finite. So L ∈ P, which implies
that SAT ∈ P, contradicting the assumption that P ̸= NP.

Theorem 5.14, the weak Ladner’s Theorem, can be strengthened to provide an infinite strict heirarchy of NP-
Intermediate languages. The proof of this stronger version of Ladner’s Theorem is almost identical to the proof
of the weak version, Theorem 5.14. Given an NP-Intermediate langauge Li, we construct Li+1 by diagonalizing
against polynomial time Turing Machines to ensure that Li+1 ̸∈ P. We also diagonalize against polynomial
time reductions from Li, to Li+1. In order to ensure we have a heirarchy, we also need that Li+1 ≤p Li.
Blowing holes in Li to obtain Li+1 ensures that the inclusion map from Li+1 to Li is a valid reduction.

Theorem 5.12. Suppose L ̸∈ P is computable. Then there exists a language K ̸∈ P such that K ≤p L and
L ̸≤p K.

Proof. Define:
K := {x ∈ L : f(|x|) is even},

where f is a function we will construct later. Let (Mi)i∈Z+ be an enumeration of polynomial time Turing
Machines, which in turn enumerates the languages in P. Let (Fi)i∈Z+ be an enumeration of polynomial time
Turing Machines without restriction to their output lengths. We note that (Fi)i∈Z+ includes reductions from
L to K.

Let ML be a decider for L. We now define f recursively as follows. First, define f(0) = f(1) = 2. We associate
f with the Turing Machine Mf that computes it. On input 1n (with n > 1), Mf proceeds in two stages, each
lasting exactly n steps. During the first stage, Mf computes f(0), f(1), . . ., until it runs out of time. Suppose
the last value Mf computed at the first stage was f(x) = k. At the next stage, the output of Mf will either
be k or k + 1, to be determined in the second stage.

In the second stage, we have one of two cases:

115

� Case 1: Suppose that k = 2i. Here, we diagonalize against the ith language L(Mi) in P as follows. The
goal is to find a string z ∈ Σ∗ such that z ∈ (L(Mi)△K). We enumerate such strings z in lexicographic
order, and then computing Mi(z),ML(z), and f(|z|) for all such strings. Note that by definition of K,
we must compute f(|z|) to ensure that f(|z|) is even. If such a string z is found in the allotted time (n
steps), then Mf outputs k+ 1 (so Mf can proceed to diagonalize against polynomial time reductions on
the next iteration). Otherwise, Mf outputs k (as we have not successfully diagonalized against Mi yet
and need to do so on the next iteration).

� Case 2: Suppose that k = 2i− 1. Here, we diagonalize against polynomial-time computable functions.
In this case, Mf searches for a string z ∈ Σ∗ such that Fi is an incorrect Karp reduction on z. That is,
either:

– z ∈ L and Fi(z) ̸∈ K; or

– z ̸∈ L and Fi(z) ∈ K.

We accomplish this by computing Fi(z),ML(z), ML(Fi(z)), and f(|Fi(z)|). Here, we use clocking to
ensure that MSAT is not taking too long. If such a string is found in the allotted time, then the output of
Mf is k + 1. Otherwise, Mf outputs k.

We now show that K satisfies the following conditions:

(a) K ≤p L,

(b) K ̸∈ P, and

(c) L ̸≤p K.

Claim 1: K ≤p L.

Proof. We note that as K ⊂ L, the inclusion map φ : K → L sending φ(x) = x is a polynomial time
reduction.

Claim 2: K ̸∈ P.

Proof. Suppose to the contrary that K ∈ P. Then there exists a polynomial time Turing Machine Mi that
decides K. By Case 1 in the second stage of the construction of Mf , no string z was found satisfying z ∈ K
and z ̸∈ L(Mi). So f(n) is even for all but finitely many n. So K and L coincide for all but finitely many
strings. As L \K is finite, L \K can be decided in polynomial time. Together with the fact that K can be
decided in polynomial time, it follows that L can be decided in polynomial time. So L ∈ P, a contradiction.

Claim 3: L ̸≤p K.

Proof. Suppose to the contrary that L ≤p K. So there exists a polynomial-time computable function Fi from L
to K. So f(n) will be even for only finitely many n, which implies that K is finite. Thus, K is polynomial-time
decidable, and so K ∈ P. This implies that L ∈ P, a contradiction.

Remark: We note that, under the assumption that P ̸= NP, Theorem 5.12 implies Theorem 5.14, using
L = SAT. Theorem 5.12 also implies the strong version Ladner’s Theorem, providing an infinite strict heirarchy
of NP-Intermediate languages. The key proof technique involves applying Theorem 5.12 and induction.

Theorem 5.13 (Ladner (Strong), 1975). Suppose P ̸= NP. Then there exists a sequence of languages (Li)i∈N
satisfying the following.

(a) Li+1 ⊊ Li for all i ∈ N.

(b) Li ̸∈ P for each i ∈ N.

(c) Li is not NP-Complete for each i ∈ N.

(d) Li ̸≤p Li+1.

116

Proof. The proof is by induction on n ∈ N. We let L0 be the language constructed in Theorem 5.14. Fix k ≥ 0
and suppose the languages L0, L1, . . . , Lk ∈ NP-Intermediate and satisfy:

Lk ⊊ Lk−1 ⊊ Lk−2 ⊊ . . . ⊊ L1 ⊊ L0,

as well as that Li ̸≤p Li+1 for each 0 ≤ i ≤ k− 1. We now apply Theorem 5.12, using Lk to obtain Lk+1 ⊊ Lk

such that Lk+1 ̸≤p Lk and Lk+1 ̸∈ P. As Lk is not NP-Complete, it follows that Lk+1 is not NP-Complete.

5.6.1 Russell Impagliazzo’s Proof of Ladner’s Theorem

We conclude by providing an alternative proof of Theorem 5.14, the weak Ladner’s Theorem. Ladner’s original
proof worked by blowing holes in SAT to construct a language that was not NP-Complete. Care was taken not
to blow too many holes in SAT, resulting in the new language belonging to P. Impagliazzo’s proof instead works
by starting SAT instances of length n and padding these instances with strings of length f(n) − |n|, so that
the new language L is no longer polynomial-time decidable. Note that the function f(n) will be defined in the
proof of Ladner’s Theorem.

Observe that if f(n) is a polynomial, then we can reduce SAT to L in polynomial time, simply by appending
the desired suffix. This would imply that L is NP-Complete. Similarly, if f(n) is exponentially large, then we
have enough room to employ a brute force search to find a solution for the SAT instance φ. So L can be decided
in time poly(f(n)), which places L ∈ P. So care needs to be taken so that f(n) is larger than a polynomial,
but still sub-exponential.

We now offer Impagliazzo’s proof of the weak version of Ladner’s Theorem.

Theorem 5.14 (Ladner (Weak), 1975). If P ̸= NP, then there exists a language L ∈ NP \ P, such that L ̸∈ NP-
Complete.

Proof (Impagliazzo). We define:

L := {φ01f(n)−n−1 : φ ∈ SAT and |φ| = n},

We note that if f(n) can be computed in time poly(n), then L ∈ NP. Let (Mi)i∈Z+ be an enumeration of
deterministic, polynomial-time, clocked Turing Machines, where the Turing Machine Mi runs in time at most
ki + i, where k is the length of the input to Mi. Note that (Mi)i∈Z+ in turn enumerates the languages of P.
We define f(n) = ng(n), where g(n) is defined as follows.

(a) g(1) = 1.

(b) Suppose g(n− 1) = i. We enumerate the strings x of length at most log(n). If there exists such a string
x ∈ L(Mi)△L, then we set g(n) = i+ 1. Otherwise, we set g(n) = i.

We note that f(n) is polynomial-time computable if and only if g(n) is polynomial time computable. So we
prove that g(n) is polynomial-time computable.

Claim 1: g(n) is polynomial-time computable.

Proof. The proof is by induction on n ∈ Z+. We note that for the base case of n = 1, g(1) = 1. So g(1) is
polynomial-time computable in n. Now fix k ≥ 1 and suppose that g(k) is computable in time poly(k). We
now show that g(k + 1) is polynomial-time computable. In order to compute g(k + 1), we first compute g(k),
which takes time poly(k) by the inductive hypothesis. Next, we enumerate at most all strings of length at
most log(k + 1). There are 2O(log(k+1)) = (k + 1)O(1) such strings. By the construction of g, we are searching
for a string x ∈ L(Mi)△L. We analyze the time complexity of checking if x ∈ L(Mi) and x ∈ L.

� We note that Mi is a polynomial time decider, which is clocked to run in time |x|i + i. We note that
|x| ≤ log(k+1), and so Mi runs in time at most (log(k+1))i + i on any string we are considering in the
computation of g(k + 1).

� We now analyze the complexity of verifying that x ∈ L. Note that in a SAT instance of size log(k + 1),
there are at most 2⌈log(k+1)⌉ ≤ k + 2 possible instances to check. Now if x is of the form:

x = φ01f(log(k+1))−| log(k+1)|−1,

117

then |φ| < log(k+ 1), and so we need to examine at most k+ 2 possible instances to verify whether φ is
a valid instance of SAT. We note that:

f(log(k + 1))− | log(k + 1)| − 1 ≤ 2f(log(k + 1))

= 2(log(k + 1))j ,

for some j ≤ i. So if |x| ≤ log(k + 1), we can check if x ∈ L in time:

k + 2 + 2(log(k + 1))j .

So the runtime of searching through all strings of length at most log(k + 1) is bounded above by:

(k + 1)O(1)

(
(log(k + 1))i + i+ k + 2 + 2(log(k + 1))j

)
,

and the runtime of computing g(k + 1) is bounded above by:

poly(k) + (k + 1)O(1)

(
(log(k + 1))i + i+ k + 2 + 2(log(k + 1))j

)
.

So g(k + 1) can be computed in polynomial time. It follows by induction that g(n) is polynomial time
computable.

As g(n) is polynomial-time computable, we have that f(n) is polynomial-time computable. We next show that
L ∈ NP.

Claim 2: L ∈ NP.

Proof. Take x ∈ L. So x is of the form:
x = φ01f(n)−n−1,

where φ ∈ SAT and |φ| = n. Suppose we are given a satisfying instance y1, . . . , yk for φ as our certificate. As
SAT ∈ NP, we may use the polynomial-time verifier for SAT to check that φ(y1, . . . , yk) = 1. Now as f(n) is
polynomial-time computable, f(n)−n− 1 is polynomial-time computable. It remains to check that x is of the
form prescribed by L; that is, x is of the form:

φ01f(n)−n−1.

This check takes polynomial-time in f(n). So our check takes polynomial-time in |x|. It follows that L ∈ NP.

Claim 3: L ̸∈ P.

Proof. Suppose to the contrary that L ∈ P. Then L = L(Mi) for some i. By assumption, the runtime of Mi

is bounded above by ni + i. So there exists h, k ∈ Z+ such that f(n) = nh for all n ≥ k. So there exists a
polynomial-time reduction from SAT to L, mapping φ 7→ φ01f(n)−n−1. This contradicts the assumption that
P ̸= NP.

Claim 4: L is not NP-Complete.

Proof. Suppose to the contrary that L is NP-Complete. Then there exists a polynomial-time reduction ψ from
SAT to L. We provide a polynomial-time algorithm for deciding SAT, which contradicts the assumption that
P ̸= NP. We note that as ψ is polynomial time computable, |ψ(x)| ≤ |x|c for some fixed constant c > 0. From
the proof of Claim 3, we have that g(n) is unbounded. So there exists an n0 ∈ Z+ such that g(n) > c for all
n ≥ n0. Let S be the set of strings of length less than n0. As S is finite, we can test whether the members of
S belong to SAT in constant (and therefore polynomial) time.

Now suppose φ is a string of length n ≥ n0. We apply ψ(φ). If ψ(φ) is not of the form τ01f(m)−m−1 with
|τ | = m, then we have that φ ̸∈ SAT. So suppose ψ(φ) is of the form τ01f(m)−m−1, where again |τ | = m. Note
that φ ∈ SAT if and only if τ ∈ SAT. Now as:

|ψ(φ)| = |τ01f(m)−m−1|
≤ |φ|c

= nc.

118

we have that |τ | < f(m) ≤ |φ|c = nc. We now argue that m = |τ | < |φ| = n. Suppose to the contrary that
m ≥ n ≥ n0. So g(m) > c, which implies that f(m) = mg(m) > mc ≥ nc, which contradicts the fact that
f(m) ≤ nc. It follows that m < n. So now we recurse on τ , applying ψ(τ) = τ101

f(ℓ)−ℓ−1 and checking if
τ1 ∈ SAT. The base case occurs when we arrive at an instance of SAT, of length less than n0. Such an instance
belongs to S. Recall that as S is finite, we can test whether the members of S belong to SAT in constant (and
therefore polynomial) time.

Now observe that we apply the reduction ψ at most n− n0 + 1 times. Each application of the reduction takes
at most nc steps. Analyzing the base case takes time O(1) steps. So the algorithm has runtime at most:

(n− n0 + 1)nc +O(1),

which is certainly polynomial in n. As we can decide SAT in polynomial-time, it follows that SAT ∈ P, contra-
dicting the assumption that P ̸= NP.

5.7 PSPACE

TODO

5.8 PSPACE-Complete

TODO

119

	Mathematical Preliminaries
	Set Theory
	Relations and Functions
	Functions
	Equivalence Relations

	Proof by Induction
	A Brief Review of Asymptotics

	Combinatorics and Graph Theory
	Basic Enumerative Techniques
	Combinatorial Proofs
	Graph Theory

	Number Theory
	Russell's Paradox and Cantor's Diagonal Argument

	Automata Theory
	Regular Languages
	Finite State Automata
	Converting from Regular Expressions to -NFA
	Algebraic Structure of Regular Languages
	DFAs, NFAs, and -NFAs
	DFAs to Regular Expressions- Brzozowski's Algebraic Method
	Pumping Lemma for Regular Languages
	Closure Properties
	Myhill-Nerode and DFA Minimization

	More Group Theory (Optional)
	Introductory Group Theory
	Introduction to Groups
	Dihedral Group
	Symmetry Group
	Group Homomorphisms and Isomorphisms
	Group Actions
	Algebraic Graph Theory- Cayley Graphs
	Algebraic Graph Theory- Transposition Graphs

	Subgroups
	Cyclic Groups
	Subgroups Generated By Subsets of a Group
	Subgroup Poset and Lattice (Hasse) Diagram

	Quotient Groups
	Introduction to Quotients
	Normal Subgroups and Quotient Groups
	More on Cosets and Lagrange's Theorem
	The Group Isomorphism Theorems
	Alternating Group
	Algebraic Graph Theory- Graph Homomorphisms
	Algebraic Combinatorics- The Determinant

	Group Actions
	Conjugacy
	Automorphisms of Groups
	Sylow's Theorems
	Applications of Sylow's Theorems
	Algebraic Combinatorics- Pólya Enumeration Theory

	Turing Machines and Computability Theory
	Standard Deterministic Turing Machine
	Variations on the Standard Turing Machine
	Turing Machine Encodings
	Chomsky Heirarchy and Some Decidable Problems
	Undecidability
	Reducibility

	Complexity Theory
	Time Complexity- P and NP
	NP-Completeness
	More on P and P-Completeness
	Closure Properties of NP and P
	Structural Proofs for NP and P
	Ladner's Theorem
	Russell Impagliazzo's Proof of Ladner's Theorem

	PSPACE
	PSPACE-Complete

