
CFL Supplement

Michael Levet

June 4, 2017

Today, we will introduce the notion of grammars to generate languages. Grammars provide a recursive set of
rules used to generate strings. The recursive structure allows for effective parsing mechanisms. Grammars are
particularly useful in programming and markup language design.

1 Context-Free Languages

Recall that the goal of automata theory is to formalize the notions of an algorithm and computation machines.
This is perhaps the most intuitive way to introduce context-free languages. Context-Free Languages are those
languages accepted by a machine called a pushdown automaton. Conceptually, a pushdown automaton starts
with a finite state automaton then adds a stack. So now the computation machine has memory aside from the
current state and character. Observe as well that all regular languages are context free. This is easy to see, as
a pushdown automaton can accept a regular language simply by ignoring the stack.

Some common examples of context-free languages are {0n1n : n ≥ 0} and the language of balanced parentheses.
Examples of strings with balanced parentheses include (()) and ()(), while (() is unbalanced. These languages
will be analyzed in greater detail later.

Formally, a context-free language is exactly the set of strings generated by a context-free grammar. The term
”context-free grammar” is often times abused to denote the language itself. The context-free grammar will
be formally introduced and examined. The pushdown automaton will be covered more thoroughly in a later
tutorial.

Context-Free Grammar: A Context-Free Grammar is a four-tuple (N,T, P, S) where:

• N is the set of non-terminal symbols. Each non-terminal symbol represents a set of strings- exactly those
strings which can be reached by it. Note that non-terminals may reach other non-terminals.

• T is the set of terminal symbols, which is equivocally the alphabet for the language.

• P is the set of productions or rules. Each production represents the recursive definition of the language.
A production consists of a non-terminal symbol as the head, followed by the production symbol →. The
string ω ∈ (N + T )∗ on the right-hand side of the production symbol is known as the body.

• S is the start symbol. The context-free grammar is generated starting at S and following the productions
until only terminals remain.

Example 1. Consider the example above with L = {0n1n : n ≥ 0}. Let’s construct a context-free grammar to
generate the language L. Let G = (N,T, P, S) be the grammar. The terminal characters are clearly T = {0, 1}.
As grammars define languages recursively, the goal is to build L from the ground up. So what are the base
cases? They are ε, 01. Now using these building blocks, how is 0011 constructed? The only answer is to stick
a 01 in the middle of another 01, giving 0(01)1. More generally, 0n1n is constructed by nesting n 01 terms. So
the grammar can be constructed with the single non-terminal symbol S and the production rules:

S → ε

S → 01

S → 0S1

1



More succinctly, we write:
S → 0S1|01|ε

Example 2. Now consider the language of balanced parentheses. We seek to build a grammar G = (N,T, P, S)
to generate this language. The terminal symbols are clearly T = {(, )}. Just like in the last example, it is
important to start from the bottom up. So what are the building blocks for this language? They are ε, (). Now
there are two cases to consider. The first is similar to the example for L = {0n1n : n ≥ 0}, where parentheses
can be nested. The other case is when a pair of balanced parentheses are right next to each other: ()(). A
single non-terminal is required, so N = {S}, and the production rules simply deal with the cases mentioned
above:

S → ε

S → (S)

S → SS

Definition 1 (Yields Relation). Let G(N,T, P, S) be a grammar, and let α, β ∈ (N + T )∗. We say that the
string α yields β, denoted α =⇒ ∗β, if it is possible to obtain β starting by using the productions in P finitely
many times. A derivation of β (from α) is the sequence of productions used to produce β from α. A leftmost
(resp. rightmost) derivation is where at each stage, we replace the leftmost (resp. rightmost) non-terminal.

Example 3. Consider again the grammar:

S → AB|ε
A→ aAb|aAbb|ε

B → bB|ε

A leftmost derivation of the string ab is given by:

S =⇒ AB =⇒ aAbB =⇒ abB =⇒ ab

Similarly, a rightmost derivation of the string ab is given by:

S =⇒ AB =⇒ A =⇒ aAb =⇒ ab

Definition 2 (Language of Grammar). Let G(N,T, P, S) be a grammar. The language of G, denoted:

L(G) = {w ∈ T ∗ : S =⇒ ∗w}

Example 4. Ask students for the language of the following grammar. (Answer: L = {aibjck : i+ j = k}):

S → aSc|B
B → bBc|ε

Example 5. Ask students for the language of the following grammar. (Answer: L = {aibj : i ≤ 2j}):

S → AB|ε
A→ aAb|aAbb|ε

B → bB|ε

1.1 Parse Trees and Ambiguity

The root is labeled by the start symbol. Each interior node is labeled by a variable in V . Each leaf is labeled
by either a variable, terminal, or ε. If the leaf is ε, it must be the sole child of its parent.

Given an interior node with children X1, . . . , Xk, the production is A→ X1 . . . Xk.

Consider E → E + E|E ∗ E|x. Give two parse trees for this.

2



Definition 3 (Ambiguous Grammar). A grammar G is said to be ambiguous if there exists a string ω ∈ L(G)
with more than one left-most (right-most, respectively) derivation S =⇒ ∗ω.

Remark: There are grammars that are inherently ambiguous; that is, every grammar is ambiguous. Deciding
if a grammar is ambiguous is impossible (this is undecidable). So removing ambiguity in general is not always
feasible.

Example 6. Consider:
E → E + E|E ∗ E|x

We have two derivations for x ∗ x+ x.

E =⇒ E + E =⇒ E ∗ E + E =⇒ x ∗ E + E =⇒ x ∗ x+ E =⇒ x ∗ x+ x

E =⇒ E ∗ E =⇒ x ∗ E =⇒ x ∗ E + E =⇒ x ∗ x+ E =⇒ x ∗ x+ x

1.2 Pushdown Automata

Definition 4 (Pushdown Automaton). A pushdown automaton (PDA) is a seven-tuple P = (Q,Σ,Γ, δ, q0, Z0, F )
where:

• Q is the finite set of states

• Σ is the finite input alphabet

• Γ is the finite stack alphabet

• δ : Q× (Σ ∪ {ε})× Γ→ Q× Γ∗

• q0 The start state

• Z0, the start symbol of the stack

• F the set of accepting states.

We pop from the stack, then push back at each transition.

Example 7. L = {ωωR : ω ∈ {0, 1}∗}. Our PDA is:

• Q = {q0, q1, q2}

• Σ = {0, 1}

• Γ = {Z0, 0, 1}

• Z0

• F = {q2}

• For each a ∈ {0, 1}, we have δ(q0, a, Z0) = {(q0, aZ0)}. (Push the initial character onto the stack).

• For each a ∈ Γ, define δ(q0, ε, a) = {(q1, a)}. (Guess where the split is).

• δ(q1, a, a) = {(q1, ε)} for each a ∈ Γ. (Process ωR).

• δ(q1, ε, Z0) = {(q2, Z0)} (After popping everything, move to accept state)

3



Example 8. L = {aibjck : i+ j = k}. Our PDA is:

• δ(q0, a, Z0) = {(q0, aZ0)} (Read in all the a’s)

• δ(q0, a, a) = {(q0, aa)}

• δ(q0, ε, Z0) = {(q1, Z0)} (If no a’s, check for b’s)

• δ(q0, ε, a) = {(q1, a)}

• δ(q1, b, Z0) = {(q1, bZ0)} (Read in b’s)

• δ(q1, b, a) = {(q1, ba)}, δ(q1, b, b) = {(q1, bb)}

• δ(q1, ε, x) = {(q2, x)} for each x ∈ Γ (Finish reading b’s in)

• δ(q2, c, x) = {(q2, ε)} for each x ∈ {a, b} (pop from the stack for each c)

• δ(q2, ε, Z0) = {(q3, Z0)} (Finish popping and accept)

Representing as diagrams. Labels input,pop/push.

4


	Context-Free Languages
	Parse Trees and Ambiguity
	Pushdown Automata


