CFL Supplement

Michael Levet

June 4, 2017

Today, we will introduce the notion of grammars to generate languages. Grammars provide a recursive set of
rules used to generate strings. The recursive structure allows for effective parsing mechanisms. Grammars are
particularly useful in programming and markup language design.

1 Context-Free Languages

Recall that the goal of automata theory is to formalize the notions of an algorithm and computation machines.
This is perhaps the most intuitive way to introduce context-free languages. Context-Free Languages are those
languages accepted by a machine called a pushdown automaton. Conceptually, a pushdown automaton starts
with a finite state automaton then adds a stack. So now the computation machine has memory aside from the
current state and character. Observe as well that all regular languages are context free. This is easy to see, as
a pushdown automaton can accept a regular language simply by ignoring the stack.

Some common examples of context-free languages are {0™1" : n > 0} and the language of balanced parentheses.
Examples of strings with balanced parentheses include (()) and ()(), while (() is unbalanced. These languages
will be analyzed in greater detail later.

Formally, a context-free language is exactly the set of strings generated by a context-free grammar. The term
”context-free grammar” is often times abused to denote the language itself. The context-free grammar will
be formally introduced and examined. The pushdown automaton will be covered more thoroughly in a later
tutorial.

Context-Free Grammar: A Context-Free Grammar is a four-tuple (N, T, P, S) where:

e N is the set of non-terminal symbols. Each non-terminal symbol represents a set of strings- exactly those
strings which can be reached by it. Note that non-terminals may reach other non-terminals.

e T is the set of terminal symbols, which is equivocally the alphabet for the language.

e P is the set of productions or rules. Each production represents the recursive definition of the language.
A production consists of a non-terminal symbol as the head, followed by the production symbol —. The
string w € (N 4+ T)* on the right-hand side of the production symbol is known as the body.

e S is the start symbol. The context-free grammar is generated starting at S and following the productions
until only terminals remain.

Example 1. Consider the example above with L = {01 : n > 0}. Let’s construct a context-free grammar to
generate the language L. Let G = (N, T, P, S) be the grammar. The terminal characters are clearly T'= {0, 1}.
As grammars define languages recursively, the goal is to build L from the ground up. So what are the base
cases? They are €,01. Now using these building blocks, how is 0011 constructed? The only answer is to stick
a 01 in the middle of another 01, giving 0(01)1. More generally, 0™1" is constructed by nesting n 01 terms. So
the grammar can be constructed with the single non-terminal symbol .S and the production rules:

S —e€
S — 01
S — 051

More succinctly, we write:
S — 0S51|01]e

Example 2. Now consider the language of balanced parentheses. We seek to build a grammar G = (N, T, P, S)
to generate this language. The terminal symbols are clearly T = {(,)}. Just like in the last example, it is
important to start from the bottom up. So what are the building blocks for this language? They are €, (). Now
there are two cases to consider. The first is similar to the example for L = {0™1" : n > 0}, where parentheses
can be nested. The other case is when a pair of balanced parentheses are right next to each other: ()(). A
single non-terminal is required, so N = {S}, and the production rules simply deal with the cases mentioned
above:

S — e
S — (S)
S —SS

Definition 1 (Yields Relation). Let G(N,T, P,S) be a grammar, and let a, 8 € (N + T)*. We say that the
string « yields 8, denoted @« = *[3, if it is possible to obtain [starting by using the productions in P finitely
many times. A derivation of B (from «) is the sequence of productions used to produce g from . A leftmost
(resp. rightmost) derivation is where at each stage, we replace the leftmost (resp. rightmost) non-terminal.

Example 3. Consider again the grammar:

S — ABl|e
A — aAblaAbble
B — bBle

A leftmost derivation of the string ab is given by:
S = AB = aAbB = abB = ab
Similarly, a rightmost derivation of the string ab is given by:
S — AB — A — aAb — ab
Definition 2 (Language of Grammar). Let G(N, T, P, S) be a grammar. The language of G, denoted:
LG)={weT*:S = *w}
Example 4. Ask students for the language of the following grammar. (Answer: L = {a'b'cF : i + j = k}):

S — aSc|B
B — bBd|e

Example 5. Ask students for the language of the following grammar. (Answer: L = {a'b’ : i < 2j}):

S — ABl|e
A — aAblaAbble
B — bBle

1.1 Parse Trees and Ambiguity

The root is labeled by the start symbol. Each interior node is labeled by a variable in V. Each leaf is labeled
by either a variable, terminal, or €. If the leaf is €, it must be the sole child of its parent.

Given an interior node with children X1, ..., X, the production is A — X7 ... X.

Consider E — E + E|E % E|z. Give two parse trees for this.

Definition 3 (Ambiguous Grammar). A grammar G is said to be ambiguous if there exists a string w € L(G)
with more than one left-most (right-most, respectively) derivation S — *w.

Remark: There are grammars that are inherently ambiguous; that is, every grammar is ambiguous. Deciding
if a grammar is ambiguous is impossible (this is undecidable). So removing ambiguity in general is not always
feasible.

Example 6. Consider:
E—- E+E|ExE|x

We have two derivations for x * z + z.

F — F+F — ExF+F — 2xF+F — z+xx+F — xxx+<x
F — EFxF — o2xF — xxEF+F — zxx+F — xxzx+2x

1.2 Pushdown Automata

Definition 4 (Pushdown Automaton). A pushdown automaton (PDA) is a seven-tuple P = (Q, X, T, §, qo, Zo, F)
where:

e () is the finite set of states
e Y is the finite input alphabet

e I is the finite stack alphabet

J:Qx(BU{e}) xI' - Q xTI™

qo The start state

Zy, the start symbol of the stack
e F the set of accepting states.

We pop from the stack, then push back at each transition.

Example 7. L = {ww®:w € {0,1}*}. Our PDA is:

b Q = {QOaQMQZ}

« X —{0,1}

o« ' = {Z,0,1}
o 7

o F'={q}

For each a € {0, 1}, we have 0(qo,a, Zo) = {(q0,aZp)}. (Push the initial character onto the stack).

For each a € T, define d(qo,€,a) = {(q1,a)}. (Guess where the split is).

R).

d(q1,a,a) = {(q1,€)} for each a € T'. (Process w

d(q1, €, Zo) = {(q2, Zo)} (After popping everything, move to accept state)

Example 8. L = {a’b/cF : i+ j = k}. Our PDA is:

d(qo, a, Zo) = {(qo,aZp)} (Read in all the a’s)

6(q0,a,a) = {(qo, aa)}
3(qo, €, Zo) = {(q1, Zo)} (If no a’s, check for b’s)

(
(
(g0, €,a) = {(q1,a)}
d(q1,b, Zo) = {(q1,0Z0)} (Read in b’s)
d(q1,
(
(
(

,x) = {(g2,)} for each z € I" (Finish reading b’s in)

b,a) ={(q1,ba)}, 6(q1,b,b) = {(q1,bb)}
0(q1, €

d(q2,¢,z) = {(q2,€)} for each x € {a,b} (pop from the stack for each c)

d(q2,€, Zo) = {(q3, Zo)} (Finish popping and accept)

Representing as diagrams. Labels input, pop/push.

	Context-Free Languages
	Parse Trees and Ambiguity
	Pushdown Automata

