
Graph Theory: Shannon Capacity Optional Problem Set

May The Force Be With:

Instructions: This problem set is optional. Individual parts are listed as Required, Advanced, Challenge,
or Open to indicate difficulty. Open problems are unsolved problems in mathematics. Successfully solving an
open problem will result in a publication, fame, and eternal glory. You may use a previous part to answer
subsequent questions, even if you do not answer that earlier part. For example, you may use Problem 1 in
your solution of Problem 2, even if you do not attempt Problem 1.

1 Preliminaries

Definition 1 (Independent Set). An independent set of a graph G(V,E) is a set S ⊂ V such that for every
i, j ∈ S, ij 6∈ E(G). Denote α(G) as the size of the largest independent set in G.

(Required) Problem 1. For the following graphs G, determine α(G) and provide an independent set of size
α(G). Justify your answer.

(a) G = C5.

(b) G = Q3.

Definition 2 (Graph Vertex Coloring). A vertex coloring of a graph G(V,E) is a function φ : V (G) → [n]
such that whenever uv ∈ E(G), φ(u) 6= φ(v). The chromatic number of G, denoted χ(G), is the smallest n ∈ N
such that there exists a coloring φ : V (G)→ [n].

(Required) Problem 2. For the following graphs G, determine χ(G).

(a) G = Kn

(b) G = C6

(c) G = C7

(d) G = Qd

Definition 3 (Clique Cover). Let G(V,E) be a graph. A clique cover C of G is a set of complete graphs
Kn1 ,Kn2 , . . . ,Knh

, such that:

• Each Kni is a subgraph of G;

• No two cliques in C share any common vertices; and

• Every vertex of G belongs to some clique of C.

The clique cover number, denoted χ(G), is the size of the smallest clique cover of C.

Example 1. Consider the cycle graph C5. Observe that C = {{1, 2}, {3, 4}, {5}} forms a clique cover of C5.
In particular, {1, 2} and {3, 4} each form a K2, while {5} forms a K1.

(Advanced) Problem 1. Show that χ(G) = χ(G), where χ(G) is the chromatic number of G, the complement
of G.

(Required) Problem 3. Show that α(G) ≤ χ(G).

1



2 Strong Product

Definition 4 (Strong Product). Let G and H be graphs. Define the strong product G �H to be the graph
with the vertex set V (G)×V (H). Now two vertices (i, j), (u, v) ∈ V (G)×V (H) are adjacent in G�H if both
of the following conditions are satisfied:

(a) i = u or iu ∈ E(G); and

(b) j = v or jv ∈ E(H).

Example 2. Consider P2 � P3, where P2 is the path on two vertices. We have the following vertices:
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3). We provide more detailed explanation for why certain vertices of P2�P2

are (or are not) adjacent:

• Consider (1, 1) and (1, 2). Observe that the first coordinates are the same (that is, 1 = 1), so condition
(a) of the strong product is satisfied. Now the second coordinates differ. However, 12 ∈ E(P2). That
is, the two vertices in P2 are adjacent. So the second condition of the strong product is satisfied. Thus,
(1, 1) and (1, 2) are adjacent in P2 � P2.

• Consider (1, 2) and (2, 3). While the first coordinates are not equal, we observe that 12 ∈ E(P2). So
condition (a) of the strong product is satisfied. Similarly, we have that 23 ∈ E(P3). So condition (b) of
the strong product is satisfied. Thus, (1, 2) and (2, 3) are adjacent in P2 � P3.

• Consider (1, 1) and (2, 3). While the first coordinates are not equal, we observe that 12 ∈ E(P2). So
condition (a) of the strong product is satisfied. Now consider the second coordinate. Here, we have that
1 6= 3; and 13 6∈ E(P3). So the condition (b) of the strong product is not satisfied.

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

Figure 1. The graph P2 � P3.

(Required) Problem 4. Draw the graph P2 � C4.

Setting. Let Σ be an alphabet. We will be transmitting words over Σ, using a noisy channel (e.g., sending an
email, making a phone call, sending a message to satellites in space, the iPhone autocorrect). As our channel is
noisy, some of the letters you send may be received as a different letter. We model this situation with a graph
G(V,E) (which we call a confusabiltiy graph), where V (G) = Σ. Now two vertices u, v of G are adjacent
u can be “confused” with v.

(Required) Problem 5. Let G be a confusability graph over the alphabet Σ. We say that messages u, v ∈ Σn

are confusable if ui and vi are confusable (i.e., uivi ∈ E(G)) for all i ∈ [n]. Prove that u and v are confusable
if and only if uv ∈ E(G�n). Here, G�n is the strong product of G with itself n times (e.g., G�3 = G�G�G).

(Required) Problem 6. Show that α(G�H) ≥ α(G)α(H).

(Required) Problem 7. Show that χ(G�H) ≤ χ(G)χ(H).

3 Shannon Capacity

Definition 5 (Shannon Capacity). Let G be a graph. The Shannon capacity of G, denoted Θ(G), is defined
as:

Θ(G) := lim
n→∞

n

√
α(G�n).

Definition 6 (Supremum). Let S ⊂ R. The supremum of S, denoted sup S, is the least upper-bound of S.
Formally, suppose that sup S = M . Then for every ε > 0, there exists x ∈ S such that x > M − ε.
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Example 3. Observe that sup [0, 1) = 1, even though 1 6∈ [0, 1). Similarly, sup [0, 1] = 1. A set may not have
a maximum value. It is helpful to think of the supremum as what the maximum would be, if the maximum
existed.

For the next problem, you may find the following lemma helpful. You may use the following lemma freely.

Lemma 1 (Feteke’s Lemma). Let {an}n∈N be a sequence that is super-additive; that is, {an}n∈N satisfies:

an+m ≥ an + am.

Then: lim
n→∞

an
n

exists and is equal to sup
n∈N

an
n

.

(Required) Problem 8. In this problem, we will show that Θ(G) is well-defined ; that is, Θ(G) exists for any
graph G. In particualr, you are asked to do the following:

(a) Show that Θ(G) is well-defined, and that: Θ(G) = sup
n∈N

n

√
(α(G�n)). [Hint: Consider the sequence

an := α(G�n). Can you tweak this sequence to a form where Feteke’s Lemma applies? You may also
want to use Problem 6 .]

(Required) Problem 9. Show that for any graph G, α(G) ≤ Θ(G).

(Advanced) Problem 2. Show that for any graph G, Θ(G) ≤ χ(G).

(Required) Problem 10. Show that Θ(C5) ≥
√

5.

(Required) Problem 11. Compute Θ(G) for the following graphs G:

(a) G = Kn

(b) G = Kn

(c) G = Kn,n

(Open) Problem 1. Determine Θ(C7).

(Open) Problem 2. Determine the computational complexity of computing Θ(G) for an arbitrary graph.
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