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Abstract

A graph vertex coloring is an assignment of labels, which are referred to as colors, such

that no two adjacent vertices receive the same color. The vertex coloring problem is

NP-Complete [8], and so no polynomial time algorithm is believed to exist. The no-

tion of a graph vector coloring was introduced as an efficiently computable relaxation

to the graph vertex coloring problem [7]. In [6], the authors examined the highly sym-

metric class of 1-walk regular graphs, characterizing when such graphs admit unique

vector colorings. We present this characterization, as well as several important conse-

quences discussed in [5, 6]. By appealing to this characterization, several important

families of graphs, including Kneser graphs, Quantum Kneser graphs, and Hamming

graphs, are shown to be uniquely vector colorable. Next, a relationship between lo-

cally injective vector colorings and cores is examined, providing a sufficient condition

for a graph to be a core. As an immediate corollary, Kneser graphs, Quantum Kneser

graphs, and Hamming graphs are shown to be cores. We conclude by presenting a

characterization for the existence of a graph homomorphism between Kneser graphs

having the same vector chromatic number. The necessary condition easily generalizes

to Quantum Kneser graphs, simply by replacing combinatorial expressions with their

quantum analogues.
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Chapter 1

Introduction

Graph vertex coloring, often referred to as simply graph coloring, is a special case of

graph labeling. Each vertex of a graph G is assigned a label or color, such that no

two adjacent vertices receive the same color. Formally, an m-coloring of a graph G is

a graph homomorphism ϕ : V (G) → V (Km). It is of particular interest to optimize

the parameter m; that is, to find the smallest m ∈ Z+ such that there exists a graph

homomorphism ϕ : V (G) → V (Km). Here, the smallest such m is referred to as the

chromatic number of G, dentoed χ(G). For parameters m ≥ 3, deciding if a graph

has an m-coloring is one of Richard Karp’s 21 NP-Complete problems from 1972 [8].

In [7], the notion of a vector coloring was introduced as a relaxation of the graph

coloring problem. For real-valued parameters of t ≥ 2, a vector t-coloring is an

assignment of unit vectors in Rd to the vertices of the graph, such that the vectors vi

and vj assigned to adjacent vertices i and j respectively, satisfy:

〈vi, vj〉 ≤ −
1

t− 1 . (1.1)

The vector chromatic number of a graph G, denoted χv(G), is the smallest such t

that G admits a vector t-coloring. A vector t-coloring is said to be strict if condition

(1.1) holds with equality for all pairs of adjacent vertices i and j. The strict vector

chromatic number of a graphG, denoted χsv(G), is the smallest such t thatG admits a

strict vector t-coloring. Both χv(G) and χsv(G) can be approximated arbitrarily close

to their actual values in polynomial time. Thus, the notion of graph vector coloring

finds immediate motivation in computational complexity, serving as an efficiently

computable lower bound for the chromatic number of a graph [5, 6].
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Graph vector coloring also has applications to information theory. Suppose Σ is a

finite set of letters, which is referred to as an alphabet. A message composed of words

over Σ is sent over a noisy channel, in which some of the letters may be confused.

The confusability graph G(V,E) of the given channel has vertex set Σ, where two

distinct elements i, j ∈ Σ are adjacent if i and j can be confused. Observe that the

independent sets of G are precisely the sets of pairwise non-confusable characters. So

the independence number α(G) is the maximum number of non-confusable characters

that can be sent over the given channel. The Shannon capacity of a graph G, denoted

Θ(G), is defined as: Θ(G) := sup
k≥1

k

√
α(Gk), where Gk is the strong product of G with

itself k times. The complexity of computing the Shannon capacity of a graph remains

an open problem. It is well known, for example, that Θ(C5) =
√

5. However, even

determining Θ(C7) remains an open problem [10]. In 1979, Lovász introduced a

graph parameter, known as the Lovász theta number, ϑ(G), with the explicit goal of

estimating the Shannon capaicty [10]. It is well known that χsv(G) = ϑ(G), where G

denotes the complement of G [7]. So the strict vector chromatic number serves as an

efficiently computable upper bound for the Shannon capacity.

This monograph surveys the results of [5, 6]. Chapter 2 serves to introduce pre-

liminary definitions and lemmata. Next, Chapter 3 begins by presenting the result

of [6] characterizing 1-walk regular graphs that have unique vector colorings. To this

end, we examine graph embeddings constructed from the eigenvectors corresponding

to the smallest eigenvalue of the adjacency matrix. Such frameworks are referred to as

least eigenvalue frameworks. In particular, the least eigenvalue framework of 1-walk

regular graph always provides an optimal vector coloring. Furthermore, the (strict)

vector chromatic number of such graphs depends only on the degree of the graph and

smallest eigenvalue of the adjacency matrix. Chapter 3 concludes by demonstrating

that Kneser graphs, Quantum Kneser graphs, and Hamming graphs are uniquely

vector colorable [5].
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Chapter 4 presents the relationship between vector colorings and cores, which is

established in [5]. Intuitively, a core is a graph G in which every homomorphism ϕ :

V (G)→ V (G) is an automorphism. Using this relationship, several families of graphs,

including Kneser graphs, Quantum Kneser graphs, and Hamming graphs, are easily

shown to be cores. Chapter 4 concludes by characterizing the existence of a graph

homomorphism between Kneser graphs having the same vector chromatic number.

The necessary condition easily generalizes to Quantum Kneser graphs, simply by

replacing combinatorial expressions with their quantum analogues.
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Chapter 2

Definitions and Preliminaries

Key definitions from graph theory, linear algebra, and algebraic combinatorics will

first be introduced. Much of this material can be found in standard references such

as [2, 3, 9, 15]. After introducing definitions, preliminary lemmata will be presented.

Notation 2.1. Let n ∈ N. Denote [n] := {1, 2, . . . , n}, with the convention that

[0] = ∅.

Notation 2.2. Let S be a set, and let k ∈ N. Denote
(
S
k

)
as the set of k-element

subsets of S.

Notation 2.3. Let p be prime, and let q = pα for some α ∈ Z+. Denote Fq as the

finite field of order q.

2.1 Linear Algebra and Algebraic Combinatorics

Definition 2.4. Let V be a finite dimensional vector space, with dimension n. For

each i ∈ [n], denote the ith standard basis vector ei ∈ V to be the vector whose ith

coordinate is 1 and all other components are 0. The set {e1, e2 . . . , en} is referred to

as the standard basis.

Definition 2.5. Direct Sum of Matrices Let M1,M2 be matrices. The direct sum

M1 ⊕M2 is the matrix:

M1 ⊕M2 :=

M1 O

O M2

 .
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Definition 2.6 (Line). Let V be a vector space. A line in V is a one-dimensional

subspace of V .

Definition 2.7 (Skew Lines). Two lines are said to be skew if their intersection is

the trivial subspace, {0}.

Notation 2.8. Let u, v ∈ Rn. The standard inner product on Rn is given by:

〈u, v〉 =
n∑
i=1

uivi.

Definition 2.9 (Unit Vector). A vector v ∈ Rn is said to be a unit vector if:

n∑
i=1
|vi|2 = 1.

Definition 2.10 (Orthogonal Transformation). A linear transformation T : V → V

on an inner product space V over R is said to be orthogonal if for every u, v ∈ V :

〈u, v〉 = 〈T (u), T (v)〉.

Definition 2.11 (Orthogonal Complement). Let V be an inner product space, and

let W be a subspace of V . The orthogonal complement of W is the set:

W⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈ W}.

Definition 2.12 (Convex Hull). Let v1, v2, . . . , vk ∈ Rn. The convex hull of

v1, v2, . . . , vk is the set:

conv({v1, . . . , vk}) =
{

k∑
i=1

λivi :
k∑
i=1

λi = 1, and λi ≥ 0 for all i ∈ [k]
}
.

Definition 2.13 (Affine Independence). The vectors v0, v1, . . . , vk ∈ Rn are affinely

independent if v1 − v0, v2 − v0, . . . , vk − v0 are linearly independent.

Definition 2.14 (Simplex). Let n ∈ N. Let v0, v1, . . . , vn+1 ∈ Rn+1 be affinely

independent unit vectors, such that the angle subtended by any two distinct vi and
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vj through the origin is arccos(−1/n). The simplex ∆n ⊂ Rn+1 centered at the origin

is given by:

∆n = conv({v0, v1, . . . , vn+1}).

Note that for any two distinct vertices u and v of the simplex ∆n, 〈u, v〉 = − 1
n
.

This property will be leveraged later to show that the vector chromatic number of a

graph is a lower bound for the chromatic number.

Definition 2.15 (Gram matrix). The Gram matrix of a set of vectors v1, . . . , vn,

denoted Gram(v1, . . . , vn), is the n× n matrix with ij-entry equal to 〈vi, vj〉.

The Gram matrix is positive semidefinite, and has rank equal to the dimension of

span(v1, . . . , vn). [6]

Definition 2.16 (Hermitian Matrix). An n×n matrix M is Hermitian if M is equal

to its conjugate transpose. That is, Mij = Mji for all i, j ∈ [n], where Mji denotes

the complex conjugate.

Definition 2.17 (Positive Semidefinite Matrix). An n × n Hermitian matrix M is

positive semidefinite if all the eigenvalues of M are non-negative.

Notation 2.18. Let n ∈ N. Denote Sn as the set of n× n symmetric matrices over

R. Similarly, denote Sn+ as the elements of Sn that are positive semidefinite.

Definition 2.19 (Schur Product). The Schur product of two matrices X, Y ∈ Sn,

denoted X ◦ Y , is given by: (X ◦ Y )ij = XijYij for all i, j ∈ [n].

Notation 2.20. Let n ∈ N. The Symmetry group of degree n is denoted Sym(n).

Definition 2.21 (Grassmanian). Let F be a field, and let n, k ∈ N. The Grassmanian

Grn(k,F) is the set of all k-dimensional subspaces of the vector space Fn.

Tools from quantum combinatorics will next be introduced, which provide a gen-

eralization of combinatorics on set systems to the linear algebraic setting.
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Definition 2.22 (Quantum Integer). Let n ∈ N. The quantum integer [n]x is the

function:

[n]x :=
n−1∑
i=0

xi = xn − 1
x− 1 .

Definition 2.23 (Quantum Factorial). Let n ∈ N. The quantum factorial [n!]x is

the function:

[n!]x =
n∏
i=1

[i]x =
n∏
i=1

xi − 1
x− 1 .

Definition 2.24 (Quantum Binomial Coefficient). Let n, k ∈ N. The quantum bino-

mial coefficient
[
n
k

]
x
is the function:[

n

k

]
x

= [n!]x
[k!]x[(n− k)!]x

.

Let p be prime, and let q = pa for some a ∈ N. It is well-known that
[
n
k

]
q

=

|Grn(k,Fq)|. Note as well that
[
n
1

]
x

= [n]x. Thus, [n]q counts the number of lines, or

one-dimensional subspaces, of Fnq . It is also worth noting that as q → 1, [n]q → n,

[n!]q → n!, and
[
n
k

]
q
→

(
n
k

)
. [9] This close relationship will be used to generalize

results about set systems to a linear algebraic setting. Not surprisingly, the proofs

about set systems generalize by simply replacing the classical combinatorial terms

with their quantum analogues.

Group actions will next be introduced. The notion of a group action is a par-

ticularly powerful and useful notions from algebra, which formalizes the notion of

symmetry. Intuitively, a group action is a discrete dynamical process on a set of ele-

ments that partitions the set. The structure and number of these equivalence classes

provide important insights in algebra, combinatorics, and graph theory.

Definition 2.25 (Group Action). Let Γ be a group, and let S be a set. A group

action is a function · : Γ× S → S satisfying the following:

(a) 1 · s = s for all s ∈ S; and

(b) g · (h · s) = (gh) · s for all g, h ∈ Γ and all s ∈ S.

7



Here, gh is understood to be the group operation of Γ. Note that a group action

· : Γ× S → S induces a group homomorphism ϕ : Γ→ Aut(S).

Example 2.26. Let n ∈ N. The group Sym(n) acts on [n] in the following manner:

for σ ∈ Sym(n) and i ∈ [n], σ · i 7→ σ(i).

Example 2.27. Let Γ be a group. The natural left action of Γ on itself is the map

· : Γ× Γ→ Γ, where g · h 7→ gh. Here, gh is understood to be the product of g and

h according to the operation of Γ.

Definition 2.28 (Orbit). Let Γ be a group, acting on the set S. The orbit of an

element s ∈ S is the set O(s) = {g · s : g ∈ Γ}.

The orbits of a group action partition the set S upon which the group Γ acts, and

so the orbit relation forms an equivalence relation.

The next term to be introduced is a transitive action. A group action is transitive

if for every pair of elements i and j in the set S, there exists an element g of the

group such that g · i 7→ j.

Definition 2.29 (Transitive Action). Let Γ be a group, and let S be a set. The

group action · : Γ×S → S is said to be transitive if there exists a single orbit, which

is the entire set S, under this action.

Example 2.30. The group action in Example 2.26 is indeed transitive. Again, let

n ∈ N. Let i, j ∈ [n]. If i = j, the identity function will map i 7→ j. If i 6= j, the

permutation (i, j) ∈ Sym(n) will map i 7→ j.

Definition 2.31 (Character). Let Γ be a group, and let C be a field. A character is

a group homomorphism ϕ : Γ→ C×.

8



2.2 Graph Theory

Definition 2.32 (Simple Graph). A simple graph G(V,E) consists of a set of vertices

V , along with a set of edges E ⊂
(
V
2

)
. An edge {u, v} will be denoted as uv.

The adjacency relation ∼ is a binary relation on V , such that u ∼ v if and only if

uv ∈ E(G). The relation u ∼ v is read as “u is adjacent to v.” If multiple graphs are

being considered, the graph in question may be subscripted on the relation. That is,

u ∼G v refers to the adjacency relation with respect to the graph G. The relation '

is a binary relation on V , where u ' v denotes that u ∼ v or u = v.

Unless otherwise stated, all graphs are assumed to be simple and will be referred

to as graphs. In order to avoid ambiguity, the vertex set of the graph G will frequently

be denoted as V (G). Similarly, the edge set of the graph G will be denoted as E(G).

Definition 2.33. Let G(V,E) be a graph, and let v ∈ V (G). The neighborhood of v

is the set: N(v) = {u : uv ∈ E(G)}. The degree of v, denoted deg(v), is |N(v)|.

Several important classes of graphs will next be introduced.

Definition 2.34 (Regular Graph). A graph G(V,E) is said to be regular if every

vertex has the same degree d. Here, d is referred to as the degree of G.

Definition 2.35 (Complete Graph). Let n ∈ N. The complete graph on n vertices,

denoted Kn, has the vertex set V (Kn) = [n] with the edge set E(Kn) =
(

[n]
2

)
.

Definition 2.36 (Cycle Graph). Let n ∈ Z+ with n ≥ 3. The cycle graph on n

verties, denoted Cn, has the vertex set V (Cn) = [n] with the edge set:

E(Cn) = {{i, i+ 1} : i ∈ [n− 1]} ∪ {{1, n}}.

Definition 2.37 (Hypercube). Let d ∈ N. The hypercube of degree d, denoted Qd,

has vertex set Fd2. Two vertices (v1, v2, . . . , vd) and (w1, w2, . . . , wd) in Qd are adjacent

if and only if they differ in precisely one position.

9



1

2

34

5

Figure 2.1: The complete graph on 5 vertices, K5.

1

2

34

5

Figure 2.2: The cycle graph on 5 vertices, C5.
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Figure 2.3: The hypercube of degree 3, Q3.
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0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0



Figure 2.4: The Adjacency Matrix of K5
.

Example 2.38. The graphs Kn, Cn, and Qd are all regular. Observe that deg(Kn) =

n− 1, deg(Cn) = 2, and deg(Qd) = d.

Definition 2.39 (Bipartite Graph). A graph G(V,E) is said to be bipartite if there

exist nonempty, disjoint sets A,B ⊂ V (G) such that A ∪ B = V (G) and E(G) ⊂

{ab : a ∈ A, b ∈ B}.

Example 2.40. The graph C2n is bipartite for all n ≥ 2, and Qd is bipartite for all

d ∈ N.

Definition 2.41 (Adjacency Matrix). Let G(V,E) be a graph. The adjacency matrix

of G, dentoed A(G) or A when G is understood, is the |V | × |V | matrix where for all

vertices i, j ∈ V (G):

Aij =


1 : ij ∈ E(G)

0 : Otherwise.

Definition 2.42 (Graph Homomorphism). Let G and H be graphs. A graph homo-

morphism is a function ϕ : V (G) → V (H) such that if ij ∈ E(G), then ϕ(i)ϕ(j) ∈

E(H). An endomorphism is a graph homomorphism ϕ : V (G) → V (G). Denote

Hom(G,H) as the set of graph homomorphisms from G to H. When G = H, the set

Hom(G,G) is denoted End(G).

Definition 2.43 (Graph Isomorphism). Let G and H be graphs. A graph isomor-

phism is a bijection ϕ : V (G) → V (H) that is also a graph homomorphism. The

11



graphs G and H are isomorphic, dentoed G ∼= H, if there exists an isomorphism

ϕ : V (G) → V (H). When G = H, ϕ is referred to as a graph automorphism. The

automorphisms of a graph G form a group, which is denoted Aut(G).

Common examples of graph homomorphisms include graph colorings.

Definition 2.44 (Graph Coloring). Let G be a graph, and let m ∈ N. An m-coloring

of a graphG is a graph homomorphism ϕ : V (G)→ V (Km). It is of particular interest

to optimize the parameter m; that is, to find the smallest m ∈ N such that there

exists a graph homomorphism ϕ : V (G)→ V (Km). Here, the smallest such m as the

chromatic number of G, dentoed χ(G).

For parameters m ≥ 3, deciding if a graph has an m-coloring is one of Richard

Karp’s 21 NP-Complete problems from 1972. [8]

Example 2.45. It is well known that a graph G is bipartite if and only if χ(G) = 2.

[15]

Example 2.46. Consider the complete graph Kn. As Kn has n vertices, any assign-

ment of n−1 or fewer colors to V (Kn) will result in two distinct vertices receiving the

same color. As every pair of vertices in Kn are adjacent, it follows that χ(Kn) ≥ n.

Now the identity map on V (Kn) is certainly a graph coloring. So χ(Kn) = n.

Example 2.47. Let n ≥ 3 be an integer, and consider the graph Cn. If n is even,

Cn is bipartite, in which case χ(Cn) = 2. If n is odd, χ(Cn) = 3.

Definition 2.48 (Core). A graph G(V,E) is said to be a core if End(G) = Aut(G).

Example 2.49. Common examples of cores include odd cycles. [3]

The next class of graph to be introduced is the Cayley graph. Intuitively, a Cayley

graph provides a combinatorial means of visualizing a group Γ’s operation. Formally,

the Cayley graph is defined as follows.

12



Definition 2.50 (Cayley Graph). Let Γ be a group, and let S ⊂ Γ such that S = S−1

and 1 6∈ Γ. The Cayley graph Cay(Γ, S) has vertex set Γ. Two elements g, h ∈ Γ are

adjacent in Cay(Γ, S) if and only if there exists s ∈ S such that gs = h.

Example 2.51. Let n ∈ Z+ with n ≥ 3, and consider the group Zn. Let S = {±1} ⊂

Zn. So Cn ∼= Cay(Zn, S).

Example 2.52. Let n ∈ Z+, and consider the group Zn. Let S = Zn \ {0}. The

graph Kn
∼= Cay(Zn, S).

Example 2.53. Let n ∈ N, and consider the group Fn2 . Let S = {e1, e2, . . . , en}. The

graph Qn
∼= Cay(Fn2 , S).

Definition 2.54 (Vertex Transitive Graph). A graph G(V,E) is said to be vertex

transitive if Aut(G) acts transitively on V (G); that is, if for every u, v ∈ Aut(G),

there exists σ ∈ V (G) such that σ(u) = v.

Example 2.55. It is well-known that Cayley graphs are vertex transitive. [3]

Definition 2.56 (1-Walk Regular Graph). Let G be a graph with adjacency matrix

A. G is said to be 1-walk regular if for every ` ∈ N, there exist constants a`, b` such

that: A` ◦ I = a`I, and A` ◦ A = b`A.

Equivocally, a 1-walk regular graph G(V,E) satisfies the following:

• For every vertex v and every i ∈ N, the number of closed walks of length i

starting at v depends only on i and not v; and

• For every edge uv and every k ∈ N, the number of walks of length k between u

and v depends only on k.

So 1-walk regular graphs exhibit a high degree of symmetry. Necessarily, 1-walk

regular graphs are regular. An important class of graph are 1-walk regular, including

vertex-transitive graphs. [6]
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Figure 2.5: The Kneser Graph KG(5, 2).

Definition 2.57 (Kneser Graph). Let n, k ∈ N, with n ≥ k. The Kneser graph

KG(n, k) has vertex set
(

[n]
k

)
, and two vertices S and T are adjacent if and only if S

and T are disjoint.

Example 2.58. Perhaps the most famous example of a Kneser graph is the Petersen

graph, which is defined as KG(5, 2).

Definition 2.59 (Quantum Kneser Graph). Let q = pα, for some prime p and

α ∈ Z+. For n, k ∈ N with n ≥ k, define the Quantum Kneser graph, or q-Kneser

Graph, q-KG(n, k) as the graph whose vertices are the k-dimensional subspaces of

Fnq . Two vertices S and T in q-KG(n, k) are adjacent precisely when S ∩ T = {0}.

Intuitively, the q-Kneser graph generalizes the Kneser graph to the linear algebraic

setting. The Kneser graph relates k-element subsets of [n] that intersect trivially. The

building blocks of each subset are the elements of [n]. The q-Kneser graph relates

k-dimensional subspaces which intersect trivially. As every subspace contains the

additive identity 0, two subspaces S and T intersect trivially if S ∩ T = {0}. Now

if S is a k-dimensional subspace of Fnq and v ∈ S is a vector, then span(v) ⊂ S.
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So 1-dimensional subspaces, or lines, are the building blocks of the k-dimensional

subspaces of Fnq .

2.3 Vector Colorings

Definition 2.60. Let t ≥ 2 be a real number, and let d ∈ N. Let Sdt be the graph

whose vertices are the unit vectors in Rd. Two unit vectors u and v in Rd are adjacent

in Sdt precisely when:

〈u, v〉 ≤ − 1
t− 1 .

Definition 2.61 (Vector Coloring). Let t ≥ 2 be a real number. Let G be a non-

empty graph with n vertices, and denote S as the set of unit vectors in Rd. A vector

t-coloring of a graph G is a graph homomorphism ϕ : V (G) → V (Sdt ). The vector

chromatic number of G, denoted χv(G), is the smallest real number t ≥ 2 such that

a vector t-coloring of G exists. The value of a vector coloring ϕ is the smallest t ≥ 2

such that there exists a graph homomorphism from G to Sdt . A vector coloring is

optimal if its value is χv(G). The vector coloring ϕ is strict if for every i ∼ j in V (G),

that:

〈ϕ(i), ϕ(j)〉 = − 1
t− 1 .

The strict vector chromatic number of G is denoted χsv(G).

Every strict vector coloring is clearly a vector coloring. It follows that χv(G) ≤

χsv(G). It will first be established that for any graph G, χsv(G) ≤ χ(G). This

provides the relation that χv(G) ≤ χsv(G) ≤ χ(G).

Lemma 2.62. For any non-empty graph G, χsv(G) ≤ χ(G).

Proof. Suppose that χ(G) = m, and fix a m-coloring ϕ : V (G) → V (Km). Con-

sider now the m-dimensional simplex ∆m centered at the origin, with vertices labeled

t1, . . . , tm. A strict vector m-vector coloring τ : V (G) → {t1, . . . , tm} will be con-

structed in the following manner. If ϕ(v) = i, set τ(v) = ti. Now as ∆m is centered
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at the origin, 〈ti, tj〉 = − 1
m

whenever i 6= j. By the construction of τ , if u ∼ v,

then τ(u) 6= τ(v). Thus, for all u ∼ v, 〈τ(u), τ(v)〉 = − 1
m
. So τ is a strict m-vector

coloring of G.

Using semidefinite programming both the vector chromatic number χv(G) and

the strict vector chromatic number χsv(G) are polynomial time computable, up to

an arbitrarily small error in the inner products. This is formalized as follows. Let

ε > 0. If a (strict) vector t-coloring exists, then a (t + ε) (strict) vector coloring

can be constructed in polynomial time, with respect to the number of vertices n and

log(1/ε). [7]

The semidefinite program for χv(G) is given below:

χv(G) = min
t≥2

t subject to: (2.1)

〈vi, vj〉 ≤ −
1

t− 1 for all ij ∈ E(G) (2.2)

〈vi, vi〉 = 1 for all i ∈ V (G). (2.3)

Similarly, the semidefinite program for χsv(G) arises by replacing the inequality

in constraint (2.2) with equality. This yields the following semidefinite program:

χv(G) = min
t≥2

t subject to: (2.4)

〈vi, vj〉 = − 1
t− 1 for all ij ∈ E(G) (2.5)

〈vi, vi〉 = 1 for all i ∈ V (G). (2.6)

The following examples provide χv(G) and χsv(G) for two common classes of

graphs.

Example 2.63. Suppose G is a non-empty bipartite graph. Recall that 2 ≤ χv(G) ≤

χsv(G) ≤ χ(G). Now as G is bipartite, χ(G) = 2. Thus, χv(G) = χsv(G) = 2.

Example 2.64. Suppose G = Kn for some n ≥ 2. Recall that χ(G) = n. So

χv(G) ≤ χsv(G) ≤ n. Suppose to the contrary that χv(G) 6= n. Let ϕ be a vector
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t-coloring of G for t < n. So there exist two vertices vi, vj such that ϕ(vi) = ϕ(vj).

As G is complete, vi ∼ vj. So 〈ϕ(vi), ϕ(vj)〉 ≥ 0, contradicting the assumption that

ϕ is a vector coloring of G. Thus, χv(G) = χsv(G) = n.

The study of graph homomorphisms will be related to vector colorings in the

following manner. Suppose there exists a vector t-coloring ϕ1 of H, and a graph

homomorphism ϕ2 : V (G) → V (H). Then ϕ1 ◦ ϕ2 is a vector t-coloring of G. In

order to establish a homomorphism from G → H, graphs whose vector colorings

have particular structure will be considered. This section will be concluded with two

helpful lemmas.

Lemma 2.65. Let G and H be graphs, with χv(G) = χv(H). If ϕ1 is an optimal

vector coloring of H and ϕ2 : V (G)→ V (H) is a graph homomorphism, then ϕ1 ◦ϕ2

is an optimal vector coloring of G.

Proof. Let t := χv(G) = χv(H). As ϕ1 is an optimal t-coloring of H, it follows that:

〈ϕ1(i), ϕ1(j)〉 ≤ − 1
t− 1 for all i ∼H j.

Now let u, v ∈ V (G) such that u ∼G v. As ϕ2 is a graph homomorphism, ϕ2(u) ∼H

ϕ2(v). Thus:

〈(ϕ1 ◦ ϕ2)(u), (ϕ1 ◦ ϕ2)(v)〉 ≤ − 1
t− 1 .

So ϕ1◦ϕ2 is a vector t-coloring of G. As χv(G) = t, ϕ1◦ϕ2 is an optimal t-coloring

of G.

Lemma 2.66. Let G and H be graphs such that χv(G) = χv(H) = t, and suppose

that every optimal vector coloring of G is injective. Then the following conditions

hold:

(a) Any homomorphism ϕ : V (G)→ V (H) is injective.
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(b) If additionally, every optimal vector coloring ψ of G satisfies:

〈ψ(u), ψ(v)〉 ≤ −1
t− 1 if and only if u ∼G v,

then any homomorphism ϕ : V (G) → V (H) is an isomorphism to an induced

subgraph of H.

Proof. (a) Suppose to the contrary that there exists a non-injective homomorphism

ϕ1 : V (G) → V (H). Let u, v ∈ V (G) be distinct such that ϕ1(u) = ϕ1(v). By

Lemma 2.65, the composition of ϕ1 with any optimal vector coloring of H

yields an optimal vector coloring of G. However, u and v are assigned the same

vector, contradicting the assumption that every optimal vector coloring of G is

injective.

(b) Let ϕ : V (G)→ V (H) be a homomorphism. Suppose to the contrary that ϕ is

not an isomorphism to an induced subgraph of H. By (a), ϕ is injective. As ϕ

is not an isomorphism, there exist vertices u, v ∈ V (G) such that u 6∼G v but

ϕ(u) ∼H ϕ(v). Let τ be an optimal vector coloring of H. By Lemma 2.65, ϕ◦ τ

is an optimal vector coloring of G. Thus:

〈(ϕ ◦ τ)(u), (ϕ ◦ τ)(v)〉 ≤ −1
t− 1 .

However, u 6∼G v, a contradiction.
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Chapter 3

Vector Colorings of Graphs

3.1 Unique Vector Colorings of 1-Walk Regular Graphs

A graph G with chromatic number m is said to be uniquely m-colorable if it has a

m-coloring ϕ : V (G) → V (Km); and for any other m-coloring τ : V (G) → V (Km),

there exists a permutation σ ∈ Sym(m) such that ϕ = σ ◦ τ . In a similar manner,

applying an orthogonal transformation to a (strict) vector coloring yields another

(strict) vector coloring. Formally, let ϕ : V (G) → V (Sdt ) be a t-vector coloring, and

let U : Rd → R` be an orthogonal transformation. As the map U preserves the inner

product, it follows that:

〈U(ϕ(i)), U(ϕ(j))〉 = 〈ϕ(i), ϕ(j)〉 ≤ −1
t− 1 for all i ∼ j.

So the map U ◦ ϕ is also a vector coloring of the same value. This is the ana-

logue of permuting colors in a standard graph coloring. The notion of unique vector

colorability is captured using using the Gram matrix.

Definition 3.1. The graph G is said to be uniquely (strict) vector colorable if for

any two optimal strict vector colorings ϕ : V (G) → V (Sdt ) and τ : V (G) → V (S`t ),

we have that:

Gram(ϕ(v1), . . . , ϕ(vn)) = Gram(τ(v1), . . . , τ(vn)).

Here, ϕ is said to be the unique optimal vector coloring of G, and ϕ and τ are

said to be congruent.
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We now explore necessary and sufficient conditions for 1-walk regular graphs to be

uniquely vector colorable. The first step is to introdue the canonical vector coloring.

Let G be a 1-walk regular graph, and let A be the adjacency matrix of G. Let P

be the n × d matrix, whose columns form an orthonormal basis for the eigenspace

associated with the smallest eigenvalue λmin of A. Let pi be the ith row of P . The

map ϕ : V (G) → Rd sending ϕ(i) =
√

n
d
pi is referred to as the canonical vector

coloring. The canonical vector coloring serves as the basis for comparing other vector

colorings of G. It will later be shown that the canonical vector coloring is in fact

an optimal strict vector coloring of G. It will first be established that the map ϕ is

indeed a strict vector coloring of G.

Lemma 3.2. Let G be a 1-walk regular graph with n vertices, and let A be the

adjacency matrix of G. Let P be the n×d matrix, whose columns form an orthonormal

basis associated with the smallest eigenvalue λmin of A. Let pi be the ith row of P .

The map ϕ : V (G)→ Rd sending ϕ(i) =
√

n
d
pi is a strict vector coloring of G.

Proof. It will be shown that 〈pi, pi〉 = d/n for all i ∈ [n], and that there exists b < 0

such that for all i ∼ j, 〈pi, pj〉 = b. Let Eλmin := PP T be the orthogonal projector

onto the λmin eigenspace of G. Denote:

Z :=
∏

λ 6=λmin

1
λmin − λ

(A− λI). (3.1)

It will first shown that Z = Eλmin . Let β = {β1, . . . , βn} be an orthonormal basis

composed of eigenvectors of A. Suppose v ∈ β is not in the eigenspace of λmin. So v

is in the eigenspace associated with some eigenvalue τ 6= λmin. Thus, (A− τI)v = 0.

It follows that Zv = 0. Now suppose instead v is in the eigenspace associated with

λmin. It follows that:
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Zv =
∏

λ 6=λmin

1
λmin − λ

(A− λI)v

=
∏

λ 6=λmin

1
λmin − λ

(Av − λv)

=
∏

λ 6=λmin

1
λmin − λ

(λminv − λv)

=
∏

λ 6=λmin

1
λmin − λ

· (λmin − λ)v

= v.

Thus, Z acts as the identity operator when restricted to the eigenspace of λmin.

So Im(Z) is the eigenspace of λmin and Z is idempotent. It follows that Z = Eλmin .

Now as G is 1-walk regular and Eλmin is a polynomial in A, there exist constants

a, b such that: Eλmin ◦ I = aI and Eλmin ◦ A = bA. As E = PP T , it follows that:

〈pi, pi〉 = a for all i ∈ [n], and 〈pi, pj〉 = b for all i ∼ j.

As Eλmin is the projector onto ker(A−λminI) and d = corank(A−λminI), tr(Eλmin) =

d. However, as Eλmin ◦ I = aI, tr(Eλmin) = na. Thus, a = d/n.

Now denote sum(M) as the sum of the entries in the matrix M . As G is 1-walk

regular, G is r-regular for some r ∈ N. Now as Eλmin ◦ A = bA, it follows that:

brn = tr(A ◦ Eλmin) = tr(λminEλmin) = λmind.

So b = λmind

nr
< 0. As λmin < 0, b < 0. Thus, the map ϕ : V (G) → Rd sending

ϕ(i) =
√

n
d
pi satisfies:

〈ϕ(i), ϕ(i)〉 = 1 for all i ∈ V (G) and 〈ϕ(i), ϕ(j)〉 = λmin

r
for all i ∼ j.

So ϕ is a strict vector coloring of G.

In order to characterize 1-walk regular graphs that are uniquely vector colorable,

the notions of a tensegrity graph and tensegrity framework will be introduced. In-

tuitively, a tensegrity framework provides a combinatorial abstraction of a physical

system, capturing notions of rigidity and flexibility.
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Definition 3.3 (Tensegrity Graph). A tensegrity graph is defined as a graph G(V,E)

where the edge set E is partitioned into three disjoint sets B,C, and S. The elements

of B,C, and S are referred to as bars, cables, and struts respectively.

Definition 3.4 (Tensegrity Framework). A tensegrity framework G(p) consists of a

tensegrity graph G, and an assignment of real-valued vectors p = (p1, . . . , pn) to the

vertices of G. Here, if each pi ∈ Rd, we denote G(p) ⊂ Rd. The associated framework

matrix is the n× d matrix, where the vector pi is the ith row of the matrix.

When working with tensegrity frameworks, the bars, cables, and struts each have

some distance (non)-preserving property. The bars preserve the distance of the re-

spective vertices. The cables provide an upper bound on the distance for certain

pairs of vertices, and the struts provide a lower bound on the distance for certain

pairs of vertices. [13] This perspective provides a means of comparing two tesnegrity

frameworks. Suppose G(p) and G(q) are tensegrity frameworks. Intuitively, G(p)

improves upon G(q) if the struts provide a greater lower bound and the cables provide

a smaller upper bound on the distance for certain pairs of vertices. The distances pro-

vided by the bars should remains the same for both G(p) and G(q), if G(p) improves

upon G(q). The next definition serves to formalize this notion of improvement.

Definition 3.5. Let G(p) and G(g) be tensegrity frameworks with respect to the

graph G. We say that G(p) dominates G(q), denoted G(p) � G(q), if the following

three conditions hold:

1. 〈qi, qj〉 = 〈pi, pj〉 for all ij ∈ B or i = j;

2. 〈qi, qj〉 ≥ 〈pi, pj〉 for all ij ∈ C;

3. 〈qi, qj〉 ≤ 〈pi, pj〉 for all ij ∈ S.

G(p) and G(q) are said to be congruent if Gram(p1, . . . , pn) = Gram(q1, . . . , qn).
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The domination relation is the key tool in characterizing optimal vector colorings.

It will be shown that for tensegrity frameworks where all the edges are struts, G(p) �

G(q) if and only if q is a better vector coloring than p.

Definition 3.6. Let G(V,E) be a graph, and let p be a vector coloring of G. Denote

G̃ be the tensegrity graph by setting S = E and B = C = ∅, and let G̃(p) be the

corresponding tensegrity framework.

Lemma 3.7. Let G(V,E) be a graph, and let p be a strict vector coloring of G. The

vector coloring q achieves a smaller or equal value compared to the vector coloring p

if and only if G̃(p) � G̃(q).

Proof. Let t be the value of p as a strict vector coloring. Suppose q is a vector

coloring r-coloring, for r ≤ t. So for all i ∼ j, it follows that:

〈qi, qj〉 ≤
−1
r − 1 ≤

−1
t− 1 = 〈pi, ph〉.

As B = C = ∅, G̃(p) � G̃(q). Conversely, suppose G̃(p) � G̃(q). As B = C = ∅

and S = E, it follows that:

〈qi, qj〉 ≤ 〈pi, pj〉 for all i ∼ j.

So q achieves a smaller or equal value compared to the vector coloring p.

Definition 3.8 (Spherical Stress Matrix). Let G(p) ⊂ Rd be a tensegrity framework,

and let P be the corresponding framework matrix. A spherical stress matrix for G(p)

is a real, symmetric n× n matrix Z with the following properties:

1. Z is positive semidefinite.

2. Zij = 0 whenever i 6= j and ij 6∈ E.

3. Zij ≥ 0 for all (struts) ij ∈ S, and Zij ≤ 0 for all (cables) ij ∈ C.

4. ZP = 0.
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5. corank(Z) = dim span(p1, . . . , pn).

We prove a couple technical results, which will be useful in characterizing 1-walk

regular graphs that are uniquely colorable.

Lemma 3.9. Let G be a tensegrity framework with no cables (i.e., C = ∅), and let

A be the adjacency matrix of G. Let τ := λmin(A). The matrix A− τI is a spherical

stress matrix for any generalized least eigenvalue framework P of G.

Proof. As τ < 0, the eigenvalues of A− τI are all non-negative. So A− τI is positive

semidefinite. As A is the adjacency matrix and τI is a scalar of the identity matrix,

(A− τI)ij = 0 whenever i 6= j and ij 6∈ E(G). As G has no cables, Zij ≤ 0 trivially

holds whenever ij ∈ C. As (A − τI)ij ≥ 0 whenever i 6= j, Zij ≥ 0 for all ij ∈ S.

Now as the columns of P are eigenvectors of τ , (A− τI)P = 0. Finally, we note that

corank(A− τI) is equal to the dimension of the eigenspace corresponding to τ . This

is precisely dim span(p1, . . . , pn).

Lemma 3.10. Let X ∈ Sn+, and let Y ∈ Sn satisfy ker(X) ⊂ ker(Y ). If X = PP T

for some matrix P , then there exists R ∈ S such that:

Y = PRP T and Im(R) ⊂ Im(P T ).

Proof. Suppose first that P has full column rank. We extend P to a full rank, square

symmetric matrix Q. Define the matrix R′ := Q−1Y (Q−1)T . As ker(X) ⊂ ker(Y ), it

follows that:

ker(X)⊕ 0 = ker(Q(I ⊕ 0)QT ) ⊂ ker(QR′QT ) = ker(Y )⊕ 0.

As Q is invertible, it follows that ker(I ⊕ 0) ⊂ ker(R′). Thus, R′ = R ⊕ 0, for

some real symmetric matrix R. By construction, we have that Y = PRP T . As P is

full rank, Im(R) ⊂ Im(P T ).

Now suppose instead that P does not have full column rank. As X is symmetric

and positive-semidefinite, there exists a matrix B with full column rank such that
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X = BBT . By the previous case, there exists a symmetric matrix R′ such that

Y = BR′BT and Im(R′) ⊂ Im(P T ). Now observe that Im(X) = Im(B) = Im(P ).

Thus, there exists a matrix U such that B = PU . Therefore, Y = (PU)R′(PU)T .

Now let E be the orthogonal projector onto Im(P T ). So E is symmetric, EP T = P T ,

and PE = P . Thus:

Y = PEUR′UTEP T .

Take R = EUR′UTE. So Im(R) ⊂ Im(E) = Im(P T ). This completes the proof.

Theorem 3.11. Let G(p) ⊂ Rd be a tensegrity framework, and let P ∈ Rn×d be the

corresponding framework matrix. Let Z ∈ Sn+ be a spherical stress matrix for G(p).

The framework G(p) dominates the framework G(q) if and only if:

Gram(q1, . . . , qn) = PP T + PRP T

where R is a symmetric d× d matrix satisfying:

(a) Im(R) ⊂ span(p1, . . . , pn);

(b) pTi Rpj = 0 for i = j and ij ∈ B ∪ {`k ∈ C ∪ S : Z`k 6= 0};

(c) pTi Rpj ≥ 0 for ij ∈ C;

(d) pTi Rpj ≤ 0 for ij ∈ S.

Proof. Suppose first there exists a matrix R ∈ Sd satisfying (a)-(d), and that:

Gram(q1, . . . , qn) = PP T + PRP T .

Note that the ij entry of Gram(q1, . . . , qn) is 〈qi, qj〉, while the ij entry of PP T +

PRP T is 〈pi, pj〉+ 〈pi, Rpj〉. Thus:

〈qi, qj〉 = 〈pi, pj〉+ 〈pi, Rpj〉 for all i, j ∈ [n].

25



By (b), it follows that 〈qi, qj〉 = 〈pi, pj〉 for all ij ∈ B or i = j. By (c), we have

that 〈qi, qj〉 ≥ 〈pi, pj〉 for all ij ∈ C. Finally, by (d), it follows that 〈qi, qj〉 ≤ 〈pi, pj〉

for all ij ∈ S. Thus, G(p) � G(q).

Conversely, suppose that G(p) � G(q). Define X := PP T , which we note is just

Gram(p1, . . . , pn). Similarly, define Y := Gram(q1, . . . , qn). As Z is a spherical stress

matrix for G(p), it follows that ZX = 0. So Im(X) ⊂ ker(Z). Using again the fact

that Z is a spherical stress matrix for G(p), we have that corank(Z) = rank(X).

Thus, Im(X) = ker(Z). As Y and Z are positive semidefinite and G(p) � G(q), it

follows that:

0 ≤ tr(ZY ) =
∑
i'j

ZijYij ≤
∑
i'j

ZijXij = tr(ZX) = 0. (3.2)

So tr(ZY ) = 0. We again use the fact that Y and Z are positive semidefinite to

obtain that if tr(Y Z) = 0, then Y Z = 0. So ker(Y ) ⊃ Im(Z) = ker(X). It follows

that ker(X) ⊂ ker(Y −X). We apply Lemma 3.10 to X and Y −X to obtain that

there exists R ∈ S such that Y = PRP T and Im(R) ⊂ Im(P T ) = span(p1, . . . , pn).

So we have that: Gram(q1, . . . , qn) = PP T + PRP T .

It will now be shown that R satisfies (a)-(d). By assumption, G(p) � G(q). So

for all ij ∈ B or i = j, it follows that 〈qi, qj〉 = 〈pi, pj〉. So pTi Rpj = 0 in this case.

Similarly, pTi Rpj ≤ 0 for all ij ∈ S, and pTi Rpj ≥ 0 for all ij ∈ C. By (3.2), we have

that: ∑
i'j

Zij(Xij − Yij) = 0.

As Zlk(Xlk−Ylk) ≥ 0 for all lk ∈ C ∪S, we have that Xlk = Ylk for all lk ∈ C ∪S,

with Zlk 6= 0.

In [6], the authors characterized the optimal vector colorings for 1-walk regular

graphs. This characterization will next be introduced.

Theorem 3.12. Let G(V,E) be a 1-walk regular graph of order n. Let G(p) ⊂ Rd

be the least eigenvalue framework, and let P ∈ Rn×d be the corresponding framework
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matrix. The vector coloring q is optimal if and only if there exists R ∈ Sd such that:

Gram(q1, . . . , qn) = n

d
(PP T + PRP T ).

and pTi Rpj = 0 for all i = j and i ∼ j.

Proof. Let G̃ be the tensegrity graph obtained from G, by setting all the edges as

struts. Let p̃ be the vector coloring mapping vertex i 7→
√

n
d
pi, where pi is the ith

row vector in P . By Lemma 3.7, q acheives a smaller value than p̃ if and only if

G̃(p̃) � G̃(q). Now as P is the least eigenvalue framework matrix for G, we have by

Lemma 3.9 that A − λminI is a spherical stress matrix for G̃(p̃). By Theorem 3.11,

we have that G̃(p̃) � G̃(q) if and only if:

Gram(q1, . . . , qn) = n

d
(PP T + PRP T ).

for some R ∈ Sd satisfying p̃Ti Rp̃j = 0 for all i ' j. Thus, for all i ' j, we have

that: 〈qi, qj〉 = 〈p̃i, p̃j〉. So the vector coloring q achieves the same value as the vector

coloring p̃.

Corollary 3.13. Let G(V,E) be a 1-walk regular graph with degree k, and let G(p) ⊂

Rd be its least eigenvalue framework. Let P ∈ Rn×d be the corresponding framework

matrix. Then χv(G) = 1− k
λmin

and the vector coloring p̃ mapping vertex i 7→
√

n
d
pi,

where pi is the ith row vector of P , is an optimal strict vector coloring of G.

Proof. By Lemma 3.2, p̃ is a strict vector coloring of G. It was established in the

proof of Theorem 3.11 that no vector coloring of G acheives a better value than p̃. In

the proof of Lemma 3.2, it was shown that the canonical vector coloring is a 1− λmin
k

coloring.

Corollary 3.14. Let G(V,E) be a 1-walk regular graph, and let G(p) ⊂ Rd be its

least eigenvalue framework. Let P ∈ Rn×d be the corresponding framework matrix. G

is uniquely vector colorable if and only if for any R ∈ Sd, we have that:

pTi Rpj = 0 for all i ' j =⇒ R = 0.
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Proof. We note that G is uniquely vector colorable if and only if, for every vector

coloring q of G:

Gram(q1, . . . , qn) = Gram(p1, . . . , pn) = n

d
PP T . (3.3)

However, by Theorem 3.11, it follows that:

Gram(q1, . . . , qn) = n

d
(PP T + PRP T ).

So (3.3) is equivalent to the statement that: if R ∈ Sd satisfies pTi Rpj = 0 for all

i ' j, then R = 0.

3.2 Unique Vector Colorings of Kneser Graphs

In this section, it will be shown that the Kneser Graph is uniquely vector colorable.

An explicit vector coloring for the Kneser Graph will also be provided. Note that

the Kneser Graph is vertex transitive, and therefore 1-walk regular. Observe that for

n < 2k, KG(n, k) has no edges. If instead n = 2k, KG(n, k) is a perfect matching on(
2k
k

)
vertices, matching S ∈

(
[n]
k

)
to its complement [n] \ S. As a perfect matching

is bipartite, χv(KG(n, k)) = 2. So we consider the case of n ≥ 2k + 1. In order to

show that KG(n, k) is uniquely vector colorable, it is necessary to first construct its

generalized least-eigenvalue framework matrix. Let P be a real-valued matrix, whose

rows are indexed by the vertices of KG(n, k) and whose columns are indexed by [n].

For a subset S ∈
(

[n]
k

)
and element j ∈ [n], define:

PS,j =


k − n : j ∈ S,

k : j 6∈ S.

While the columns of P are not necessarily orthogonal, they do span the least

eigenspace of KG(n, k) [4]. Thus, the row vectors of P form a generalized least

eigenvalue framework of KG(n, k). So to show that KG(n, k) is uniquely vector
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colorable, we have by Corollary 3.14 that it suffices to show that for any n × n

symmetric matrix R:

pTi Rpj = 0 for all i ' j =⇒ R = 0.

Now by construction, P~1 = 0, where ~1 denotes the all-ones vector. It will first

be shown that span({pi : i ∈ V (KG(n, k))}) = {~1}⊥. So if Im(R) ⊂ span(~1),

then pTi Rpj = 0. Thus, it suffices to check only symmetric matrices R such that

Im(R) ⊂ span({pi : i ∈ V (KG(n, k))}).

We begin with some notation. For S ∈
(

[n]
k

)
and x ∈ [n], denote:

1S,x =


1 : x ∈ S,

0 : x 6∈ S.

Now for S ∈
(

[n]
k

)
, define the following subspaces of Rn:

PS := span
(
{pT : T ∩ S = ∅} ∪ {~1}

)
,

ES := span ({ei : i 6∈ S} ∪ {1S}) .

Where pT is the row vector of P corresponding to T ∈
(

[n]
k

)
, and ei is the ith

standard basis vector.

Lemma 3.15. Let n, k ∈ N with n ≥ 2k + 1, and let S ∈
(

[n]
k

)
. Then PS = ES.

Proof. We first show that PS ⊂ ES. Observe that:

~1 = 1S +
∑

i∈[n]\S
ei.

So ~1 ∈ ES. Now let pT ∈ PS. By the definition of pT , T ∩ S = ∅. Thus, for each

i ∈ T , i 6∈ S. So for each i ∈ T , ei ∈ ES. It follows that:

pT =
∑
i∈T

ei ∈ ES.
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We conclude that PS ⊂ ES. Now let i ∈ [n] \ S. We show that ei ∈ PS. As

n ≥ 2k + 1, there exists a subset U ⊂ [n] with |U | = k + 1, i ∈ U , and U ∩ S = ∅.

So for any T ∈
(
U
k

)
, T ∩ S = ∅. Thus, pT ∈ PS. Now recall that ~1 ∈ PS. So for each

T ∈
(
U
k

)
, we have:

~1− 1
k
pT =

(
n

k
− 1

)
1T ∈ PS.

Thus, 1T ∈ PS. Consider the incidence matrix whose rows are indexed by the

members of
(
U
k

)
and whose columns are indexed by [n]. We note that the vectors

1T are the rows of this matrix, where T ∈
(
U
k

)
. So this matrix is of the form [M |0].

In order to show that ei ∈ PS for all i ∈ U , it suffices to show that MTM has full

column rank. Now observe that (MTM)ij counts the number of subsets of U that

contain both i and j. Note that if i 6= j, there are
(
k−1
k−2

)
= k− 1 elements of

(
U
k

)
that

contain both i and j. If i = j, there are
(

k
k−1

)
= k elements of

(
U
k

)
that contains i.

So:

(MTM)ij =


k − 1 : i 6= j,

k : i = j.

Thus, MTM = I + (k − 1)J , which clearly has only positive eigenvalues. So

MTM is invertible. So for all j ∈ U , ej ∈ PS. Finally, it will be shown that 1S ∈ PS.

Observe that:

1S = ~1−
∑

i∈[n]\S
ei.

So 1S ∈ PS, and we conclude that ES ⊂ PS.

Corollary 3.16. Let n, k ∈ N such that n ≥ 2k+1, and consider the graph KG(n, k).

We have that:

span ({pT : T ∈ V (KG(n, k))}) = span({~1})⊥.

Proof. Set S = ∅. By Lemma 3.15, it follows that:

span
(
{pT : T ∈ V (KG(n, k))} ∪ {~1}

)
= Rn.
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Thus:

span ({pT : T ∈ V (KG(n, k))}) = span({~1})⊥.

Corollary 3.16 will now be employed to prove that KG(n, k) is uniquely vector

colorable, for n ≥ 2k + 1.

Theorem 3.17. Let n, k ∈ N such that n ≥ 2k + 1. The graph KG(n, k) is uniquely

vector colorable.

Proof. As G = KG(n, k) is vertex transitive, it is 1-walk regular. Let P be the real-

valued matrix, whose rows are indexed by the vertices of KG(n, k) and whose columns

are indexed by [n]. For a subset S ∈
(

[n]
k

)
and element j ∈ [n], define:

PS,j =


k − n : j ∈ S,

k : j 6∈ S.

Recall that P is a generalized least eigenvalue framework matrix of G. By Corol-

lary 3.14, it suffices to show that for any matrix R ∈ Sn, the following condition

holds:

pTSRpT = 0 for all S ' T =⇒ R = 0. (3.4)

By Corollary 3.16, the row space of P is span({~1})⊥. So if Im(R) ⊂ span(~1), condi-

tion (3.4) immediately holds. Thus, it suffices to consider the case Im(R) ⊂ span(~1)⊥.

It follows from condition (3.4) that pTS and RpT are orthogonal. Furthermore, as

Im(R) ⊂ span({~1})⊥, RpT is orthogonal to ~1. So RpT is orthogonal to: PT , where we

recall:

PT := span
(
{pT : T ∩ S = ∅} ∪ {~1}

)
.

By Lemma 3.15, PT = ET . So for i 6∈ T , RpT and ei are orthogonal. As R is

symmetric, it follows that pT is orthogonal to Rei for all T not containing i. It follows
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from this, and the fact that Im(R) ⊂ span(~1)⊥ to deduce that Rei is orthogonal

to PF where F = {i}. By Lemma 3.15, PF = EF . Observe that 1F = ei. So

EF = {ej : j ∈ [n]} = Rn. As i was arbitrary, it follows that R = 0.

Remark: The graph KG(n, k) is
(
n−k
k

)
regular with smallest eigenvalue λmin =

−
(
n−k−1
k−1

)
[3]. So for n ≥ 2k + 1:

χv(KG(n, k)) = 1 +

(
n−k
k

)
(
n−k−1
k−1

) . (3.5)

Each row of the generalized least framework matrix P we constructed has norm√
nk(n− k). For n ≥ 2k + 1, we construct an optimal vector coloring for KG(n, k)

as follows. The vertex S of KG(n, k) is assigned the vector pS, which is defined as

follows:

pS(i) =


k−n√
nk(n−k)

: i ∈ S,

k√
nk(n−k)

: i 6∈ S.

Now let S, T ∈ V (KG(n, k)), and denote h := |S ∩ T |. Observe that:

〈pS, pT 〉 = 1
nk(n− k) ·

(
h(k − n)2 + 2(k − h)k(k − n) + (n+ h− 2k)k2

)
= 1
nk(n− k) ·

[
h
(
(k − n)2 − 2k(k − n) + k2

)
+
(
(n− 2k)k2 + 2k2(k − n)

)]
= 1
nk(n− k) ·

(
hn2 − k2n

)
= h

k
· n/k

n/k − 1 −
1

n/k − 1 .

In particular, when h = 0, we have that:

h

k
· n/k

n/k − 1 −
1

n/k − 1 = − 1
n/k − 1 .

So χv(KG(n, k)) = n/k. In particular, it follows from (3.5) that:

n

k
= 1 +

(
n−k
k

)
(
n−k−1
k−1

) .
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3.3 Unique Vector Colorings of q-Kneser Graphs

It is straight-forward to modify the proof that KG(n, k) is uniquely vector colorable

(for n ≥ 2k + 1) to show that q-KG(n, k) is uniquely vector colorable (again, for

n ≥ 2k+ 1). At a high level, the k-element subsets are replaced by the k-dimensional

subspaces of Fnq , and elements of [n] are replaced by the 1-dimensional subspaces of

Fnq , or lines. Finally, recall that the canonical vector coloring p of KG(n, k) utilizes

the integers n and k. The canonical vector coloring of q − KG(n, k) is essentially

identical to p, replacing n and k with the quantum integers [n]q and [k]q.

The standard Kneser graph shares a number of properties with the q-Kneser graph.

Both graphs are vertex transitive, and so 1-walk regular. Just as is the case with the

Kneser graph, q-KG(n, k) has no edges when n < 2k and is a perfect matching when

n = 2k. So we restrict attention to q-KG(n, k) for configurations n ≥ 2k + 1 [4].

The least-eigenvalue framework matrix for q-KG(n, k) will now be constructed. For

a k-dimensional subspace S ∈ Grn(k,Fq) and line ` in Fnq , define:

PS,` =


[k]q − [n]q : ` ⊂ S,

[k]q : ` 6⊂ S.

In order to show that KG(n, k) is uniquely vector colorable, we have by Corollary

3.14 that it suffices to show that for any n× n symmetric matrix R:

pTi Rpj = 0 for all i ' j =⇒ R = 0.

Fix S ∈ Grn(k,Fq). Now S contains [k]q lines. So there are [n]q − [k]q lines in Fnq

that are not contained in S. Let pS be the row indexed by S in P . Observe that:

〈pS,~1〉 = [k]q([k]q − [n]q) + ([n]q − [k]q)kq = 0.

Thus, P~1 = 0. It will next be shown that span({pS : S ∈ V (q-KG(n, k))}) =

span(~1)⊥. In light of this fact and Corollary 3.14, q-KG(n, k) is uniquly vector col-
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orable if and only if for any [n]q×[n]q symmetric matrix R satisfying Im(R) ⊂ span(~1):

pTi Rpj = 0 for all i ' j =⇒ R = 0.

For S ∈ Grn(k,Fq) and the line ` ⊂ Fnq , denote:

1S,` =


1 : ` ⊂ S,

0 : ` 6⊂ S.

Now for S ∈ Grn(k,Fq), define the following subspaces of R[n]q :

PS := span
(
{pT : T ∩ S = {0}} ∪ {~1}

)
,

ES := span ({e` : ` 6⊂ S} ∪ {1S}) ,

where pT is the row vector of P corresponding to T ∈ Grn(k,Fq), and e` is the

standard basis vector indexed by the line ` ⊂ Fnq .

Lemma 3.18. Let n, k ∈ N with n ≥ 2k+ 1, and let S ∈ Grn(k,Fq). Then PS = ES.

Proof. It will be shown that PS ⊂ ES. Observe that:

~1 = 1S +
∑

` skew to S
e`.

So ~1 ∈ ES. Now let pT ∈ PS. As T ∩ S = {0} by definition of pT , it follows that

` 6⊂ S for each ` ⊂ T . So e` ∈ ES. Thus:

pT =
∑
`⊂T

e`.

So pT ∈ ES, and we conclude that PS ⊂ ES. Now let ` be a line skew to S. It

will be shown that e` ∈ PS. As n ≥ 2k + 1, there exists a U ∈ Grn(k + 1,Fq) with

` ⊂ U and U ∩ S = {0}. So for any k-dimensional subspace T of U , we have that

T ∩ S = {0}. Thus, pT ∈ PS. Now recall that ~1 ∈ PS. So for each k-dimensional

subspace T of U , we have:

~1− 1
k
pT =

(
n

k
− 1

)
1T ∈ PS.
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Thus, 1T ∈ PS. Consider the incidence matrix whose rows are indexed by the

k-dimensional subspaces of U and whose columns are indexed by the lines of Fnq .

Observe that the vectors 1T are the rows of this matrix, where T is a k-dimensional

subspace of U . So this matrix is of the form [M |0]. In order to show that e` ∈ PS

for all ` ⊂ U , it suffices to show that MTM has full column rank. Now observe that

(MTM)ij counts the number of subspaces of U that contain both i and j. Note that

if i 6= j, there are
[
k−1
k−2

]
q

= [k − 1]q k-dimensional subspaces of U that contain both i

and j. If i = j, there are
[
k
k−1

]
q

= [k]q k-dimensional subspaces of U that contains i.

So:

(MTM)ij) =


[k − 1]q : i 6= j,

[k]q : i = j.

Thus: MTM = qkI + [k − 1]qJ , which clearly has only positive eigenvalues. So

MTM is invertible. So for all j ∈ U , ej ∈ PS. Finally, it will be shown that 1S ∈ PS.

Observe that:

1S = ~1−
∑

` skew to S
e`.

So 1S ∈ PS, and we conclude that ES ⊂ PS.

Corollary 3.19. Let n, k ∈ N such that n ≥ 2k+1, and consider the graph KG(n, k).

We have that:

span ({pT : T ∈ V (KG(n, k))}) = span({~1})⊥.

Proof. We set S = {0}. By Lemma 3.18, we obtain that:

span
(
{pT : T ∈ V (q-KG(n, k))} ∪ {~1}

)
= R[n]q .

Thus:

span ({pT : T ∈ V (q-KG(n, k))}) = span({~1})⊥.
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We now employ Corollary 3.19 to prove that q-KG(n, k) is uniquely vector col-

orable, for n ≥ 2k + 1.

Theorem 3.20. Let n, k ∈ N such that n ≥ 2k+1. The graph q-KG(n, k) is uniquely

vector colorable.

Proof. As G = q-KG(n, k) is vertex transitive, it is 1-walk regular. Let P be the

real-valued matrix, whose rows are indexed by the vertices of q-KG(n, k) and whose

columns are indexed by the lines of Fnq . For S ∈ Grn(k,Fq) and line ` in Fnq , define:

PS,` =


[k]q − [n]q : j ∈ S,

[k]q : j 6∈ S.

Recall that P is a generalized least eigenvalue framework matrix of G. By Corol-

lary 3.14, it suffices to show that for any matrix R ∈ S [n]q , we have that:

pTSRpT = 0 for all S ' T =⇒ R = 0. (3.6)

By Corollary 3.19, the row space of P is span(~1)⊥. So if Im(R) ⊂ span(~1),

condition (3.6) immediately holds. Thus, it suffices to consider the case Im(R) ⊂

span(~1)⊥. By condition (3.6), we have that pTS and RpT are orthogonal. Furthermore,

as Im(R) ⊂ span(~1)⊥, it follows that RpT is orthogonal to ~1. So RpT is orthogonal

to PT , where we recall:

PT := span
(
{pT : T ∩ S = ∅} ∪ {~1}

)
.

By Lemma 3.18, PT = ET . So for a line i 6⊂ T , RpT and ei are orthogonal. As

R is symmetric, it follows that pT is orthogonal to Rei for all T not containing i.

We deduce from this and the fact that Im(R) ⊂ span(~1)⊥, that Rei is orthogonal

to PF where F = {i}. By Lemma 3.18, PF = EF . Observe that 1F = ei. So

EF = {ej : ` is a line of Fnq } = R[n]q . As i was arbitrary, it follows that R = 0.
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Remark: The graph q-KG(n, k) is qk2
[
n−k
k

]
q
-regular with smallest eigenvalue

λmin = −qk(k−1)
[
n−k−1
k−1

]
q
[11]. So for n ≥ 2k + 1:

χv(q-KG(n, k)) = 1 +
qk
[
n−k
k

]
q[

n−k−1
k−1

]
q

. (3.7)

Each row of the generalized least framework matrix P has norm√
[n]q[k]q([n]q − [k]q). For n ≥ 2k + 1, an optimal vector coloring for q-KG(n, k) is

constructed as follows. The vertex S of q-KG(n, k) is assigned the vector pS, which

is defined as follows:

pS(`) =


[k]q−[n]q√

[n]q [k]q([n]q−[k]q)
: ` ⊂ S,

[k]q√
[n]q [k]q([n]q−[k]q)

: ` 6⊂ S.

Now let S, T ∈ V (q-KG(n, k)), and denote h := dim(S ∩ T ). It follows that:

〈pS, pT 〉 =(
[h]q([k]q − [n]q)2 + 2([k]q − [h]q)[k]q([k]q − [n]q) + ([n]q + [h]q − 2[k]q)[k]2q

)
[n]q[k]q([n]q − [k]q)

=
[h]q

(
([k]q − [n]q)2 − 2[k]q([k]q − [n]q) + [k]2q

)
[n]q[k]q([n]q − [k]q)

+

(
([n]q − 2[k]q)[k]2q + 2[k]2q([k]q − [n]q)

)
[n]q[k]q([n]q − [k]q)

=
[h]q[n]2q

[n]q[k]q([n]q − [k]q)
−

[k]2q[n]q
[n]q[k]q([n]q − [k]q)

= [h]q
[k]q
· [n]q/[k]q

[n]q/[k]q − 1 −
1

[n]q/[k]q − 1 .

In particular, when h = 0, we have that:

[h]q
[k]q
· [n]q/[k]q

[n]q/[k]q − 1 −
1

[n]q/[k]q − 1 = − 1
[n]q/[k]q − 1 .

So χv(q-KG(n, k)) = [n]q/[k]q. In particular, it follows from (3.7) that:

[n]q
[k]q

= 1 +
qk
[
n−k
k

]
q[

n−k−1
k−1

]
q

.
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3.4 Unique Vector Colorings of Hamming Graphs

Fix k ∈ [n], and consider the k-distance graph ofQn, which has vertex set V (Qn). Two

vertices u and v are adjacent in the k-distance graph of Qn if and only if d(u, v) = k

in Qn. Denote Cn,k as the set of vectors in Fn2 with k bits. The elements of Cn,k are

said to have weight k. We note that Qn
∼= Cay(Fn2 , Cn,1). In a similar manner, the

k-distance graph of Qn may be defined as Cay(Fn2 , Cn,k). Observe that when k is odd,

Cay(Fn2 , Cn,k) is bipartite. However, when k is even and k 6= n, Cay(Fn2 , Cn,k) has two

non-bipartite, isomorphic components which correspond to the even and odd weight

vectors, respectively. The component of Cay(Fn2 , Cn,k) with even weight vectors is

referred to as Hn,k. In this section, it will be shown that Hn,k is uniquely vector

colorable, for even values of k in the interval [n/2 + 1, n − 1]. The main tool is

Corollary 3.14. We first show that for even values of k, Hn,k is 1-walk regular. To do

so, it suffices to show that Hn,k is vertex transitive.

Lemma 3.21. Let n ∈ N, and let 0 < k ≤ n be even. Then Hn,k is vertex transitive.

Proof. Denote Γ := {v ∈ Fn2 : ∑n
i=0 vi ≡ 0 (mod 2)} = V (Hn,k). Observe that Γ is

closed under the inherent addition operation from Fn2 . So Γ forms a subgroup of Fn2 .

The natural left action of Γ on itself induces a transitive action on the vertices of

Hn,k. In particular, for any u, v ∈ V (Hn,k), the element u + v in Γ maps u to v. So

Hn,k is vertex-transitive; and thus, 1-walk regular.

Now observe that Hn,k is a
(
n
k

)
-regular graph. In order to determine χv(Hn,k) for

k ∈ [n/2+1, n−1], it is necessary to determine the minimum eigenvalue λmin of Hn,k.

Denote A(Hn,k) as the adjacency matrix of Hn,k. As Cay(Fn2 , Cn,k) consists of two

isomorphic components, the adjacency matrix of Cay(Fn2 , Cn,k), which is denoted A,

can be written as:

A =

A(Hn,k) O

O A(Hn,k)

 .
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So the smallest eigenvalue of Hn,k is precisely the smallest eigenvalue of

Cay(Fn2 , Cn,k). We appeal to a result of Babai [1], which classifies the eigenvalues

and eigenvectors of Cayley graphs over abelian groups. Let Γ be an abelian group,

and let C ⊂ Γ such that C is closed under inverses and 0 6∈ C. The eigenvalues and

eigenvectors of Cay(Γ, C) are determined exactly by the characters of Γ. Precisely,

if χ is a character of Γ, then ∑c∈C χ(c) is an eigenvalue of Cay(Γ, C) with the cor-

responding eigenvector v = (χ(g))g∈Γ. In particular, there are |Γ| characters for Γ,

which provides a full orthogonal eigenbasis.

This result will be leveraged to ascertain the smallest eigenvalue of Cay(Fn2 , Cn,k).

The characters of Fn2 are of the form χa(x) = (−1)a·x, where a ∈ Fn2 is fixed and a · x

is the dot product considered over Fn2 . Denote a⊥ = {y ∈ Fn2 : a · y = 0}. Observe

that χa(x) = 1 if and only if x ∈ a⊥. So the eigenvalue corresponding to χa is given

by:

λa =
∑

c∈Cn,k

(−1)a·c = |Cn,k ∩ a⊥| − |Cn,k \ a⊥| =
(
n

k

)
− 2|Cn,k \ a⊥|. (3.8)

So to determine the smallest eigenvalue of Cay(Fn2 , Cn,k), it suffices to determine

the elements a ∈ Fn2 maximize |Cn,k \ a⊥|. We cite the bound from [6], that for all

a ∈ Fn2 : |Cn,k \ a⊥| ≤
(
n−1
k−1

)
, with equality if and only if a has weight 1 or weight

n− 1. Thus, we have that:

λmin(Cay(Fn2 , Cn,k)) = n− 2k
k

(
n− 1
k − 1

)
,

with multiplicity 2n. Corollary 3.14 will now be employed to determine χv(Hn,k)

and construct the optimal (strict) vector coloring of Hn,k.

Theorem 3.22. Let k ∈ [n/2 + 1, n − 1] be an even integer. The graph Hn,k is

uniquely vector colorable, with vector chromatic number:

χv(Hn,k) = 2k
2k − n.
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Furthermore, the canonical vector coloring of Hn,k is given by u 7→ pu ∈ Rn,

where:

pu(j) = (−1)uj

√
n

for all j ∈ [n].

Proof. By Lemma 3.21, Hn,k is vertex transitive; and therefore, 1-walk regular. So

by Corollary 3.13, we have that:

χv(Hn,k) = 1− deg(Hn,k)
λmin

= 2k
2k − n.

Let P denote the least eigenvalue framework matrix of Hn,k. Corollary 3.13 also

provides that the normalized row vectors of P form an optimal strict vector coloring

of Hn,k. The matrix P will be explicitly constructed. Recall that:

λmin(Hn,k) = λmin(Cay(Fn2 , Cn,k)) = n− 2k
k

(
n− 1
k − 1

)
.

Note that λmin(Cay(Fn2 , Cn,k)) has multiplicity 2n. Recall the adjacency matrix A

of Cay(Fn2 , Cn,k) can be written as:

A =

A(Hn,k) O

O A(Hn,k)

 .
So λmin(Hn,k) has multiplicity n. Denote va as the eigenvector of Cay(Fn2 , Cn,k)

corresponding to the character χa. So the set of orthogonal eigenvectors of λmin of

Cay(Fn2 , Cn,k) corresponding to λmin are: {vei
}ni=1∪{v~1+ei

}ni=1. Now for any eigenvector

va of Cay(Fn2 , Cn,k), we may write va = (xa, ya), where xa is the restriction of va to

Hn,k, and ya is the restriction of va to Fn2 \ V (Hn,k). Furthermore, observe that for

each a ∈ Fn2 , the following hold:

va(z) = v~1+a(z) for all z ∈ V (Hn,k),

va(z) = −v~1+a(z) for all z ∈ Fn2 \ V (Hn,k).

It follows that for all i ∈ [n], if vei
= (xi, yi) then v~1+ei

= (xi,−yi). It will now be

shown that the vectors {xi}ni=1 span Rn. As the eigenvectors in {vei
}ni=1 ∪ {v~1+ei

}ni=1
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are pairwise orthogonal, we have for all distinct i, j ∈ [n] that:

〈vei
, vej
〉 = 〈v~1+ei

, v~1+ej
〉 = 0.

So the vectors {xi}ni=1 are orthogonal. Thus:
{

xi√
2n−1

: i ∈ [n]
}
is an orthonormal

basis for the eigenspace of Hn,k corresponding to λmin. So the matrix P , whose ith

column is given by xi√
2n−1

, is the generalized least eigenvalue framework matrix of

Hn,k. The canonical vector coloring of Hn,k is obtained by scaling the rows of P by√
2n−1

n
. As xi is the restriction of vei

to Hn,k, it follows that:

pu(j) = (−1)uj

√
n

for all j ∈ [n].

This completes the proof.

Theorem 3.23. Let k ∈ [n/2 + 1, n] be an even integer. The graph Hn,k is uniquely

vector colorable.

Proof. By Lemma 3.21, we have that Hn,k is vertex transitive, and therefore 1-walk

regular. Let P be the least eigenvalue framework matrix of Hn,k, which was con-

structed in Theorem 3.22. So by Corollary 3.14, Hn,k is uniquely vector colorable if

and only if for all matrices R ∈ Sn:

pTi Rpj = 0 for all i ' j =⇒ R = 0. (3.9)

As {px : x ∈ V (Hn,k)} spans Rn, it suffices to show that Rpx = 0 for all x ∈

V (Hn,k). Let x ∈ V (Hn,k), and consider the subspace:

Vx = span({py : y ∈ V (Hn,k), y ' x}).

As R is symmetric, condition (3.9) is equivalent to Rpx ∈ V ⊥x for all x ∈ V (Hn,k).

We note that if Vx = Rn for all x ∈ V (Hn,k), then Rpx = 0 for all x ∈ V (Hn,k).

It will first be shown that V0 = Rn, where V0 is the subspace Vx for x = 0 ∈ Fn2 .

Note that the neighbors of 0 in Hn,k are the vectors of weight k in Fn2 . Let i, j ∈ [n]
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be distinct, and let y, z ∈ Cn,k such that y and z differ only in positions i and j. So

ei − ej =
√
n

2 (py − pz) ∈ V0. Observe that:

span({ei − ej : i, j ∈ [n], i 6= j}) = span(~1)⊥.

Recall that p0 = 1√
n
~1, so ~1 ∈ V0. Thus, V0 = Rn.

Now let x ∈ Fn2 , and let Diag(px) be the diagonal n × n matrix, whose diagonal

entries are the elements of px. Now let y ' 0, so py ∈ V0. For each i ∈ [n], we have

that:

Diag(px)py(i) =


− 1
n

: px(i) 6= py(i),

1
n

: px(i) = py(i).

So Diag(px)py = px+y, where x+y is considered in Fn2 . Observe that the natural left

action of Fn2 on itself induces a faithful action on Cay(Fn2 , Cn,k). Thus, N(x) = x·N(0),

where:

x ·N(0) := {x+ y : y ∈ N(0)}.

Thus, Diag(px)V0 ⊂ Vx ⊂ Rn. As Diag(px) has full rank and V0 = Rn, it follows

that Vx = Rn. As x was arbitrary, it follows that Vx = Rn for all x ∈ Fn2 . The result

follows.
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Chapter 4

Cores and Homomorphisms From Specific Graph

Classes

4.1 Cores and Vector Colorings

The goal of this section is to establish a sufficient condition for a connected graph

to be a core. The notion of local injectivity will be leveraged. Informally, a graph

homomorphism is locally injective if it is injective on the neighborhood of each vertex.

Let H be a fixed graph. If a graph G is connected and every graph homomorphism

ϕ : V (G)→ V (H) is locally injective, then G is a core. Recall that vector t-colorings

are graph homomorphisms into Sdt (for some d). Using this fact, a relation between

vector colorings and cores is established.

Definition 4.1. Let G and H be graphs, and let ϕ : V (G) → V (H) be a graph

homomorphism. We say that ϕ is locally injective if for any u, v ∈ V (G) that share

a common neighbor, ϕ(u) 6= ϕ(v).

Recall that a graph is a core if every endomorphism is an automorphism. The

following result of Nešetřil [12] serves as the basis to establish a connection between

local injectivity and cores.

Theorem 4.2. Let G be a connected graph. Every locally injective endomorphism of

G is an automorphism.

Proof. The proof is by induction on |G|. When |G| = 2, G ∼= K2. The only locally

injective endomorphisms of G are the identity map, and the map exchanging the
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vertices of G. These endomorphisms are the only automorphisms of G. Now fix |G| >

2, and suppose that the theorem statement holds for every graph H with |H| < |G|.

Suppose to the contrary that there exists a locally injective ϕ ∈ End(G)\Aut(G). So

there exists a vertex v ∈ V (G)\ϕ(V (G)). Let G1, . . . , Gk be the components of V (G)\

{a}. Now for each i ∈ [k], ϕ restricted to Gi is a locally injective endomorphism.

So by the inductive hypothesis, ϕ restricted to Gi is an automorphism of Gi. Now

as v 6∈ ϕ(V (G)), ϕ(v) ∈ Gi for some i ∈ [k]. As G is connected, ϕ(G) is connected.

So ϕ(V (G)) ⊂ Gi. So for every u ∈ N(v), we have by the Pigeonhole Principle that

ϕ(N(u)) 6= N(ϕ(u)). So ϕ is not locally injective, a contradiction.

Lemma 4.3. A connected graph G is a core if and only if there is a (possibly infinite)

graph H such that Hom(G,H) 6= ∅ and every ϕ ∈ Hom(G,H) is locally injective.

Proof. If G is a core, then every endomorphism of G is an automorphism. So we take

H = G and are done. Conversely, suppose that G is connected and not a core. As

G is not a core, there exists τ ∈ End(G) \ Aut(G). By Theorem 4.2, τ is not locally

injective. So for any ρ ∈ Hom(G,H), ρ ◦ τ is not locally injective.

We apply the above lemma, using the graph H = Sdt for d ∈ N and t ≥ 2, to

relate vector colorings and cores.

Theorem 4.4. Let G be a connected graph. If every optimal vector coloring is locally

injective, then G is a core.

Proof. Let t := χv(G), and let:

d := max{k|ρ : V (G)→ Skt is an optimal vector coloring}.

Let H := Sdt . By construction, Hom(G,H) is precisely the set of optimal vector

colorings of G. By assumption, every optimal vector coloring of G is locally injective.

So we apply Lemma 4.3 to deduce that G is a core.

44



We apply Theorem 4.4 in the following manner to obtain several families of cores.

Suppose G is connected and uniquely vector colorable. If the unique vector coloring

of G is locally injective, then by Theorem 4.4, G is a core.

Corollary 4.5. For n ≥ 2k + 1, KG(n, k) and q-KG(n, k) are cores.

Proof. By Theorem 3.17, KG(n, k) is uniquely vector colorable. Similarly, by Theo-

rem 3.20 q-KG(n,k) is uniquely vector colorable. The vector colorings of KG(n, k) and

q-KG(n, k) constructed at the end of Sections 3.3 and 3.4, respectively, are injective.

So by Theorem 4.4 KG(n, k) and q-KG(n, k) are cores.

Corollary 4.6. Let k ∈ [n/2 + 1, n− 1], the graph Hn,k is a core.

Proof. By Theorem 3.23, Hn,k is uniquely vector colorable. The canonical vector

coloring of Hn,k constructed in Theorem 3.22 is injective. So by Theorem 4.4, Hn,k is

a core.

4.2 Homomorphisms Between Kneser and q-Kneser Graphs

Let G and H be Kneser graphs. While the full set Hom(G,H) is unknown, an

extensive list of homomorphisms between G and H is known. One noteable result

is the following due to Stahl [14]: there exists a homomorphism ϕ : KG(n, k) →

KG(n′, k′) if and only if n′ is an integer multiple of n, in which case k′ is an integer

multiple of k as well. Stahl’s proof employed the Erdós-Ko-Rado Theorem. In this

section, an alternative proof of this result due to [5] is provided. The following lemma

is the primary tool. Lemma 4.7 also provides for an analogous necessary condition

for the existence of a homomorphism between q-Kneser graphs.

Lemma 4.7. Let G and H be graphs where G is uniquely vector colorable and

χv(G) = χv(H). Let M be the Gram matrix of an optimal vector coloring of H.
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If ϕ : V (G) → V (H) is a homomorphism, the principal submatrix of M correspond-

ing to {ϕ(g)}g∈V (G) is the Gram matrix of the unique optimal vector coloring of G.

Proof. Let ψ be an optimal vector coloring of H. By Lemma 2.65, ψ ◦ ϕ is an

optimal vector coloring of G. In particular, as G is uniquely vector colorable, ψ ◦ ϕ

is the unique vector coloring of G. So {ϕ(g)}g∈V (G) is the Gram matrix of the unique

optimal vector coloring of G.

Theorem 4.8. Let n, n′, k, k′ ∈ Z+ satisfying n > 2k and n/k = n′/k′. Then there

exists a homomorphism from KG(n, k) to KG(n′, k′) if and only if n′ is a multiple of

n and k′ is a multiple of k.

Proof. Suppose first that n′ = nq and k′ = kq. We view the vertices of KG(n′, k′) as

subsets of size k′, drawn from the set [n]× [q]. Let ϕ : V (KG(n, k))→ V (KG(n′, k′))

be given by mapping the vertex S in KG(n, k) to S 7→ [q] × S, which is a vertex

in KG(n′, k′). Now suppose that S and T are adjacent vertices in KG(n, k). So

S ∩ T = ∅. By construction, ϕ(S)∩ϕ(T ) = ∅ as well, so ϕ(S) and ϕ(T ) are adjacent

in KG(n′, k′). Thus, ϕ is a homomorphism.

Conversely, suppose there exists a homomorphism:

ψ : V (KG(n, k))→ V (KG(n′, k′)).

Denote γ := n/k = n′/k′. So χv(KG(n, k)) = χv(KG(n′, k′)) = γ. Let p be the

canonical vector coloring of KG(n, k), which was constructed at the end of Section

3.2. By the remark at the end of Section 3.2, we have that if S, T ∈ V (KG(n, k))

with h := |S ∩ T |, then:

〈pS, pT 〉 = h

k
· γ

γ − 1 −
1

γ − 1 .

By Lemma 4.7, it follows that:{
h

k
· γ

γ − 1 −
1

γ − 1 : h ∈ [k]
}
⊂
{
h′

k′
· γ

γ − 1 −
1

γ − 1 : h′ ∈ [k]
}
. (4.1)
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By (4.1), we have that for h = 1, there exists h′ ∈ [k′] such that:

1
k
· γ

γ − 1 −
1

γ − 1 = h′

k′
· γ

γ − 1 −
1

γ − 1 . (4.2)

Note that (4.2) is equivalent to k′ = kh′. Now as n/k = n′/k′, it follows that

n′ = nh′. So n′ is an integer multiple of n, and r′ is an integer multiple of r.

Using Lemma 4.7, the authors in [5] established an analogous necessary condition

for the existence of homomorphisms between q-Kneser graphs. The proof is analogous

to Theorem 4.8, replacing n, k, and h with their quantum analogues. It remains an

open problem to characterize the existence of a homomorphism between q-Kneser

graphs.

Theorem 4.9. Let n, k, q, n′, k′, q′ be integers satisfying n ≥ 2k + 1, n′ ≥ 2k′ +

1, and [n]q/[k]q = [n′]q′/[k′]q′. If there exists a homomorphism ϕ : q-KG(n, k) →

q′-KG(n′, k′), then: {
[h]q
[k]q

: h ∈ [k]
}
⊂
{

[h′]q′
[k′]q′

: h′ ∈ [k′]
}
.

In particular, [n′]q′ and [k′]q′ are integer multiples of [n]q and [k]q, respectively.

Proof. Let ϕ : q-KG(n, k) → q′-KG(n′, k′) be a homomorphism. Denote γ :=

[n]q/[k]q = [n′]q′/[k′]q′ . By the remark at the end of Section 3.3, we note that

χv(q-KG(n, k)) = χv(q′-KG(n′, k′)) = γ. By Theorem 3.20, q-KG(n, k) and

q-KG(n′, k′) are uniquely vector colorable. So by Lemma 4.7, it follows that:{
[h]q
[k]q

: h ∈ [k]
}
⊂
{

[h′]q′
[k′]q′

: h′ ∈ [k′]
}
. (4.3)

Note that [1]q = 1. So if h = 1, there exists h′ ∈ [k′]. such that:

1
[k]q
· γ

γ − 1 −
1

γ − 1 = [h′]q′
[k′]q′

· γ

γ − 1 −
1

γ − 1 . (4.4)

Note that (4.4) is equivalent to: [k′]q′ = [k]q[h′]q′ . As [n]q/[k]q = [n′]q′/[k′]q′ , it

follows that [n′]q′ = [n]q[h′]q′ .
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